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1. Présentations orales

Application of Machine Learning for Materials Science9:40-10:10

Nataliya Sokolovska1

1Sorbonne Université, Paris

The number of applications of data mining and machine learning for chem-
istry and materials science increases rapidly. There is a hope that recent devel-
opments in machine learning will accelerate the progress in materials science,
that they will help to generate novel materials, and to explore their properties.
We will consider three big families of machine learning methods: supervised
learning, unsupervised learning, and reinforcement learning, and the state-of-
the-art prediction methods such as linear, non-linear, and deep classifiers. We
will discuss feature engineering including feature construction and feature se-
lection. I will provide a brief overview of a machine learning pipeline: data
(feature) representation, training a model, and testing it in collaboration with
human experts.

Machine Learning and High-throughput Computational
Screening10:10-10:30

Ambroise van Roekeghem1

1CEA, LITEN, 17 Rue des Martyrs, 38054 Grenoble, France

The new field of high-throughput ab-initio materials modeling has been
raising considerable interest in the last decade. This is due to the conjunction
of two recent developments: the increasing availability of computational data,
and the achievements obtained by machine-learning methods based on such
large datasets. While the search for new, better energy materials has been
a long-standing issue, this new route promises to accelerate drastically the
discovery of new materials. Several experimental confirmations have already
demonstrated the potential of those in silico predictions.

High-throughput computing has been originally pushed forward by groups
in the U.S., giving birth to large databases such as the Materials Project
or AFLOWlib. Europe is now catching up, with groups at the state of the
art in different countries and large European projects such as the NOMAD
and AiiDA repositories. At present, several challenges remain to be solved.
For example, to improve the prediction of the (meta-)stability of compounds,
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notably at finite temperature; to accelerate more advanced electronic structure
methods so that they can be used high-throughput; or more practically, to
tighten the links with experiments and industrial developments.

In this presentation, I will introduce the field of high-throughput com-
putational screening, show a few examples of how simple machine learning
techniques are currently used in this field, and discuss some of the challenges
ahead.

REF: F. Legrain et. al, How Chemical Composition Alone Can Predict
Vibrational Free Energies and Entropies of Solids, Chem. Mater. 29, 6220
(2017)

Computer-assisted design of complex metallic alloys 10:30-10:50

Edern Menou1, Emmanuel Bertrand2, Jérémy Rame1, Clara Desgranges1,
Gérard Ramstein3, Franck Tancret2

1SAFRAN Tech – SAFRAN (FRANCE) – France
2Institut des Matériaux Jean Rouxel (IMN), Université de Nantes, CNRS :

UMR6502 – France
3Laboratoire d’Informatique de Nantes-Atlantique, Université de Nantes, CNRS :

UMR6241 – France

The design of metallic alloys incorporating many elements such as nickel-
based superalloys and high-entropy alloys is not trivial. The high number of
alloying elements not only results in a very large space of producible alloys,
but also makes any physical metallurgy-based modelling of physicochemical
properties hard to formulate or validate due to the numerous interacting pa-
rameters. In order to solve these issues, a computer-assisted design method
is proposed. It circumvent the difficulty of finding promising alloys amongst
the huge set of all possibilities by using either genetic algorithms or a carefully
bounded systematic grid search approach. Several data-intensive models are
employed in order to guide this search for high performance alloys. On the
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one hand, the method of computer-coupling of phase diagrams and thermo-
chemistry (CALPHAD) enables the determination of thermochemical features
of an alloy given its composition (e.g., constitution, high-temperature stabil-
ity, weldability). On the other hand, Gaussian process regression is used to
model and provide estimates of various thermomechanical properties as a func-
tion of temperature and alloy composition (e.g. yield stress, tensile strength,
creep life). The combination of these tools has been exploited for designing
high performance alloys of different classes, including, for gas turbines, nickel-
based superalloys for disks and blades. The approach has also been applied
to the design of high entropy alloys. In each use case, alloys are found whose
combination of properties surpasses that of existing alternatives.

Generalized Stochastic simulation algorithm for
Artificial Chemistry11:05-11:35

Hedi Soula1

1Sorbonne Université, Paris

Artificial chemistries (AC) are useful tools and a simple shortcut for the
study of artificial life. In many works, ACs are quite straightforward or simplis-
tic or highly unrealistic (or all combined) but in several works AC are extremely
complex. Among them, we focus of Hutton Artificial Chemistry HuAC where
reactions act on the nodes of a graph (so-called the atoms) where the con-
nected components composed the actual molecules of the environment. The
main works from Hutton are based on a 2D simulator (squirm) with auto-
replication and several other properties. This paper proposes a computation
framework and software that cancel the need for 2d space simulation in the
HuAC while keeping a lot of the features of this chemistry. It relies on the
Stochastic Simulation Algorithm that has been here adapted to work on graph
structure. In order to test it, we simulated Huttons auto-replication which
relies heavily on strong spatial inter- actions in a spaceless environment. In
addition, due to the increase in performance, we develop some preliminary
work on Random Chemical Worlds where reactions are randomly selected. We
showed on simple metrics that the fraction of reactions among all possible is
a general parameter that acts on the system similarly to a phase transition.
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Prédire une géométrie moléculaire convergée par des
modèles d’apprentissage automatique 11:35-11:55

Thomas Cauchy1, Benoit Da Mota2

1Université d’Angers, MOLTECH-Anjou,
2Université d’Angers, LERIA

Molecular chemistry is defined as the science of molecular (discrete) en-
tities and its researchers form the largest community in Chemistry. Today,
hundred of millions of molecules are known. In their vast majority, they are
composed of less than a hundred of nuclei and less than a thousand of electrons.
The chemical properties of such molecules depend of the electrons localization.
Such properties can only be computed by approximate methods. Since the de-
mocratization of scientific computing, calculations in chemistry has become an
essential part of every research. Without any collaborative information sys-
tem, tons of redundant results are generated and then deleted each year. Such
discarded information could have been employed for others studies. There is a
blatant lack of curated data in open access associated with artificial intelligence
or statistical models for the exploration and exploitation of these data. We
present QuChempedia, a quantum (molecular) chemistry collaborative ency-
clopedia and its first artificial intelligence application: prediction of converged
molecular geometry with neural networks.

5



Generative Adversarial Networks for Finding New
Crystal Structures11:55-12:15

Asma Atmna1,2, Asma Nouira1, Jean-Claude Crivello1, Nataliya Sokolovska2

1ICMPE-CNRS, Thiais
2Sorbonne Université, Paris

Our motivation is to propose an efficient approach to generate novel stable
metal hydrides for hydrogen storage. This combinatorial problem is handled in
practice through combinatorial DFT calculations. Therefore, it can take many
hours of human experts to construct and evaluate new data. Unsupervised
learning methods such as Generative Adversarial Networks (GANs) can be
used efficiently to produce new data, and have shown promising results in
image processing applications. In this talk, we illustrate how GANs can be used
to generate new chemically stable crystallographic structures with increased
domain complexity. We present a model inspired by a cross-domain GAN
(DiscoGAN) and test our approach on two pseudo–binaries systems: (Pd,Ni)–
H and (Mg,Ti)–H.

Machine Learning Like a Physicist13:35-14:35

Michele Ceriotti1
1COSMO, EPFL, Lausanne, Suisse

Statistical regression techniques have become very fashionable as a tool to
predict the properties of systems at the atomic scale, sidestepping much of the
computational cost of first-principles simulations and making it possible to
perform simulations that require thorough statistical sampling without com-
promising on the accuracy of the electronic structure model. In this talk I will
argue how data-driven modelling can be rooted in a mathematically rigorous
and physically-motivated framework, and how this is beneficial to the accuracy
and the transferability of the model. I will also highlight how machine learning
- despite amounting essentially at data interpolation - can provide important
physical insights on the behavior of complex systems, on the synthesizabil-
ity and on the structure-property relations of materials. I will give examples
concerning all sorts of atomistic systems, from semiconductors to molecular
crystals [1], and properties as diverse as drug-protein interactions[2], dielec-
tric response of aqueous systems[3] and NMR chemical shielding in the solid
state[4].

1 F. Musil, S. De, J. Yang, J. E. J. E. Campbell, G. M. G. M. Day, and
M. Ceriotti, Chem. Sci. 9 (2018) 1289

6



2 A. P. A. P. Bartók, S. De, C. Poelking, N. Bernstein, J. R. J. R. Kermode,
G. Csányi, and M. Ceriotti, Sci. Adv. 3, (2017) e1701816

3 A. Grisafi, D. M. Wilkins, G. Csányi, and M. Ceriotti, Phys. Rev. Lett.
120 (2018) 36002

4 http://shiftml.org

How many materials are left to discover? An
exploration of quaternary space 14:35-14:55

Michael Sluydts1,2, Michiel Larmuseau1,2, Titus Crepain1, Karel Dumon1,
Kurt Lejaeghere1,3, Stefaan Cottenier1,2

1Center for Molecular Modeling, Ghent University – Belgique
2Department of Electrical Energy, Metals, Mechanical Constructions & Systems,

Ghent University – Belgique
3Department of Applied Physics, Ghent University – Belgique

The frontier of materials science is shifting evermore towards the develop-
ment of ‘exotic’ functional materials, which display an unfamiliar combination
of properties. The underlying behavior giving rise to these materials’ proper-
ties is often too complex to predict purely from their crystal structure. New
exotic materials are thus largely developed bymimicking existing materials,
inevitably introducing bias.

While truly new exotic materials are likely to exist in unknown regions of
materials space, it is unlikely we will find them through biased exploration. At
the same time, random exploration is unsustainable given the time required to
synthesize and characterize new materials. Several questions thus arise. How
can we explore the vast materials space intelligently, yet without bias? And
perhaps most importantly: how many materials are left to discover?

We investigate this fundamental question by creating a database of hypo-
thetical crystals in quaternary space, where experimental exploration is lim-
ited. By employing highthroughput ab initio methods, we are able to predict
various properties of these unknown materials, including their stability. Fur-
thermore, applying machine learning during the screening procedure yields a
ten-fold speedup over brute-force exploration. This yields a relatively unbi-
ased, yet fast exploration method.

By comparing the discovery rate, composition and structure of the new
materials with that of experimentally known quaternary phases, an estimation
can be made of how many materials are yet to be discovered within this region
of materials space.
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Evaluating a linear machine learning force field for
aluminium14:55-15:15

Maarten Cools-Ceuppens1, Toon Verstraelen2

1Center for Molecular Modeling, Ghent University – Belgique
2Center for Molecular Modeling, Ghent University (CMM) – Technologiepark 903

BE-9052 Zwijnaarde, Belgique

Molecular dynamics is a well-established tool to study structural and dy-
namical properties of a broad class of materials. The potential energy surface
(PES) and its derivatives (the forces acting on the nuclei) are the key in-
gredients in those simulations. Ideally, one should use ab-initio techniques,
which approximate the exact many-body Schrödinger equation, to construct
the PES. In practice this is not feasible for extended systems or long simula-
tion times, due to the increasing computational effort. For this very reason,
machine learning force fields are being developed. They allow a fast evaluation
of the forces and energies of a molecular system at the accuracy of ab-initio
techniques, which enables us to simulate multiple new molecular systems that
were not accessible up till now.

Most state-of-the-art machine learning force fields (deep neural networks,
kernel ridge regression ...) split the total energy into atomic contributions.
Each of those atomic energies are learned based on atomic descriptors or fea-
tures, which are invariant under rotations, translations and permutations of
equivalent atoms. This ensures the conservation of translational and rotational
momentum. Consequently, these atomic feature vectors serve as the input in
neural networks or kernel based methods. For example, SchNet [1] (a deep neu-
ral network) expands the inter-atomic distances into a Gaussian basis while
SOAP [2], (using Gaussian Aproximation Potentials), makes use of Spherical
Harmonics to describe angular features and Gaussians to describe the radial
part.

Here, we show that a simple ridge regression model (i.e. the atomic energy
is a linear function of its atomic features) can contend with state-of-the-art
machine learning force fields. As a test case, a force field for aluminium is
constructed. The training dataset [3] consist of about 11000 different configu-
rations (bulk, surfaces, clusters, dislocations ...) generated using multiple md-
trajectories. Unlike the typical image-classification datasets, md-trajectories
are highly correlated training sets. For this reason, some md-trajectories are
excluded from this dataset and put together in an external validation set.
Next, all the other data is shuffled and split in a training (90%) and test set
(10%).

The simple linear model achieves mean absolute errors (MAE) around 0.03
eV / A, on the training and test set, outperforming conventional Embedded
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Atom Models (0.08 - 0.20 eV / A). In comparison, deep neural nets like SchNet
can halve our errors. However, they have external validation errors which
are higher than the ones for our linear model. The same happens when the
number of features increases, confirming the observations made in a recent
paper [4], where selecting the most important features improve the training
accuracy while combating overfitting. Hence, by simplifying our model and by
decreasing the number of features, our force field is capable to generalize well,
even when using highly time-correlated md-trajectories as trainig data.

1 K. T. Schütt et al. J. Chem. Phys. 148 241722 (2018)

2 A. P. Bartók et al. Phys. Rev. B 87 184115 (2013)

3 V. Botu et al. J. Phys. Chem. C 121 511-522 (2017)

4 G. Imbalzano et al. J. Chem. Phys. 148 241730 (2018)

Chemical space modeling and visualization with
generative topographic maps 15:35-15:55

Gilles Marcou1, Dragos Horvath1, Alexandre Varnek1

1Laboratory of Chemoinformatics (UMR7140), CMC, Université de Strasbourg,
Strasbourg, France

The Generative Topographic Mapping (GTM) algorithm is an unsupervised
method to map high dimensional data to a two-dimensional representation
[1]. In the process, the GTM builds a probabilistic model of the data that
can be exploited for data characterization, comparison or classification and
regression model building. The presentation aims to be an introduction to
this methodology and is illustrated with several cases.

• QSAR and GTM study of electrolytic solvents: the viscosity, ionic con-
ductivity and oxydation potential of carbonate and sulfate compounds
was modeled (Figure 1). The most promising ones were investigated
experimentaly as ingredients for the formulation of new electrolytes.

• The analysis of a chemical library of over 2M compounds from 36 chem-
ical providers, plus the NCI [1b]. Through the use of an innovative
methodology, the Generative Topographic Map (GTM), it is possible to
get a detailed view and understanding of the intimate structure of the
embedding chemical space, compare the chemical libraries of commercial
providers and rationalize decisions for compound purchasing.
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Figure 1: The density of the chemical space of electrolytic solvent ingredients.
Dark areas are highly populated regions and light areas are low populated
regions. The projections of the compounds on the map are represented by
dots. The colored dots are the location of the newly synthesized electrolytic
ingredients.

• The emergence of “Universal Maps” [2] [3]. These maps are trained over
the ChEMBL and are able produce reasonable predictions over an en-
semble of biological properties. It is shown how these maps are combined
to improve their utility.

References:

1 (a) Bishop, C. M.; Svensén, M.; Williams, C. K., GTM: The generative
topographic mapping. Neural computation 1998, 10 (1), 215-234; (b)
Kireeva, N.; Baskin, I.; Gaspar, H.; Horvath, D.; Marcou, G.; Varnek, A.,
Generative Topographic Mapping (GTM): Universal Tool for Data Visu-
alization, Structure-Activity Modeling and Dataset Comparison. Molec-
ular informatics 2012, 31 (3-4), 301-312

2 Sidorov, P.; Viira, B.; Davioud-Charvet, E.; Maran, U.; Marcou, G.;
Horvath, D.; Varnek, A., QSAR modeling and chemical space analysis
of antimalarial compounds. Journal of computer-aided molecular design
2017, 31 (5), 441-451.

3 Sidorov, P.; Gaspar, H.; Marcou, G.; Varnek, A.; Horvath, D., Mappa-
bility of drug-like
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Accurate deep neural network potential for predicting
properties of solids 15:55-16:15

Anton Bochkarev1, Ambroise Van Roekeghem1, Natalio Mingo1

1CEA, LITEN, 17 Rue des Martyrs, 38054 Grenoble, France

Density Functional Theory is a very versatile tool which allows to compute
multiple properties of materials. Nowadays, it is routinely applied for pre-
dicting, e.g., binding and cohesive energies of molecules and solid, electronic
band structures, vibrational properties at 0K. Nevertheless, as the computa-
tional complexity of the DFT calculations scales non-linearly with the system
size,the applications are often limited to the systems containing at maximum a
few hundreds of atoms. It is therefore difficult to apply DFT for studying, e.g.,
solids with defects, properties of the materials at finite temperature, dynami-
cal effects. To overcome these issues, the “classical” interatomic potentials are
applied. Usually, these potentials approximate the energy of interaction be-
tween atoms by some kind of analytical function with the parameters which are
adjusted to match experimentally known properties. The main disadvantage
of these potentials is the lack of accuracy and transferability. The machine-
learning technics provide the way to produce the interatomic potentials which
are addressing deficiencies of the “classical” interatomic potentials while stay-
ing computationally efficient. We present an interatomic machine-learning
potential trained on DFT calculations using artificial neural networks (ANN).
Our algorithm simultaneously trains on the DFT data for energies and atomic
forces. This leads to the more efficient utilization of the DFT data as well as
an increased accuracy of the potential. Our machine-learning potential is also
universal in terms of the size of the system and its chemical composition. We
demonstrate its versatility and accuracy via computing various properties of
solids and compare the results with direct DFT calculations.
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Modélisation prédictive des relations
propriétés-composition dans les verres d’oxydes16:15-16:35

Damien Perret1, Alexandra Garcin1

1Commissariat à l’Energie Atomique et aux Energies Alternatives –
DE2D/SEVT/LDMC – CEA Marcoule – 30207 Bagnols-sur-Cèze – France

Depuis une cinquante d’années, le verre est utilisé comme matériau de
confinement des déchets nucléaires de haute et moyenne activité. Le besoin
de modéliser et de prédire via une approche statistique et empirique les pro-
priétés des verres nucléaires en fonction de leur composition a débuté dans les
années 90. Les études antérieures consistaient en une évaluation paramétrique
des propriétés des verres en fonction de la composition, en faisant varier un
ou deux composants autour d’une composition de référence. Cette méthode
nécessite d’effectuer un grand nombre de formulations et ne permet d’expliquer
la variation de propriété qu’autour d’une composition de référence. Le besoin
de connaître la variation des propriétés d’intérêt en tout point du domaine
de composition s’est avéré rapidement nécessaire et cependant incompatible
avec une approche paramétrique simple d’une part, et avec un grand nombre
d’éléments chimiques à faire varier en même temps, d’autre part. La complex-
ité de la composition du verre nucléaire rend impossible l’utilisation d’outils
théoriques (DFT, dynamique moléculaire, contraintes topologiques) et néces-
site le développement de modèles statistiques empiriques. Parmi les propriétés
d’intérêt à modéliser, on peut citer la durabilité chimique du verre, la tem-
pérature de transition vitreuse, ou encore la viscosité de la fonte verrière.

Depuis les années 2000, l’augmentation significative de la puissance des
outils informatiques a permis l’utilisation d’algorithmes performants dans les
méthodes de data mining. Par exemple, il est aujourd’hui possible de modéliser
efficacement la température de transition vitreuse d’un verre de composition
complexe à l’aide de réseaux de neurones. La viscosité de la fonte verrière est
une propriété plus difficile à modéliser, du fait de sa très grande variabilité
sur les échelles de température et de composition. Cette communication vise
à présenter une méthode récemment développée, qui associe les techniques
de plan d’expériences, de régression multilinéaire et de réseaux de neurones.
L’outil développé utilise les données de formulation verrière générées au CEA
ces 30 dernières années ainsi qu’un grand nombre de données collectées dans
la littérature. Il permet de prédire la température de transition vitreuse ainsi
que la viscosité de la fonte verrière à différentes températures.
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2. Présentations par affiche

Hyperbolic Support Vector Machine P1

Aya El Dakdouki1,2

1Université des Sciences et Technologies de Lille - Lille I
2INRIA Nancy, Université Henri Poincaré - Nancy I

Dans l’apprentissage automatique, les machines à vecteurs de support (SVM)
sont un ensemble de techniques d’apprentissage supervisé destinées à résoudre
des problèmes de discrimination et de régression. Les SVM sont une générali-
sation des classifieurs linéaires. Dans ce papier, j’introduirai un nouveau clas-
sifieur multi-classe à marge basé sur des classes de fonctions à valeurs vecto-
rielles, dont chaque fonction composante est associée à une catégorie. Il sagit
d’une machine à noyau dont les surfaces de séparation sont hyperboliques et
il généralise les SVM. Ensuite, j’établirai ses propriétés statistiques, parmi
lesquelles la Fisher consistance et je montrerai les classes de fonctions com-
posantes sont des classes Glivenko-Cantelli uniformes (GC) ceci en établissant
un majorant de la complexité de Rademacher. Cela donne un risque garanti
de ce classifieur.

Towards better efficiency of interatomic linear machine
learning potentials P2

Alexandra Goryaeva1, Jean-Bernard Maillet2, Mihai-Cosmin Marinica
1DEN - Service de Recherches de Métallurgie Physique – Commissariat à l’énergie

atomique et aux énergies alternatives (CEA) Paris-Saclay – France
2DAM, DIF – Commissariat à l’énergie atomique et aux énergies alternatives

(CEA) Paris-Saclay – France

In the field of materials science, machine learning potentials have achieved
maturity and became worthwhile alternative to conventional interatomic po-
tentials. In this work we profile some characteristics of linear machine learning
methods. Being numerically fast and easy to implement, these methods offer
many advantages and appear to be very attractive for large length and time
scale calculations.

However, we emphasize that in order to be accurate on some target prop-
erties these methods eventually yield overfitting. This feature is rather inde-
pendent of training database and descriptor accuracy. At the same time, the
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major weakness of these potentials, i.e. lower accuracy with respect to the ker-
nel potentials, proves to be their strength: within the confidence limits of the
potential fitting, one can rely on less accurate but faster descriptors in order
to boost the numerical efficiency. Here, we propose a hybrid type of atomic
descriptor that combines the original forms of radial and spectral descriptors.
Flexibility in choice of mixing proportions between the two descriptors ensures
a user defined control over accuracy / numerical efficiency of the resulting hy-
brid descriptor form. These observations open many avenues in the field of
linear machine learning potentials that up to now are preferentially coupled
with more robust and computationally expensive spectral descriptors.

Towards a more compact representations of
microstructures using deep learningP3

Michiel Larmuseau1,2,3,4, Michael Sluydts3,4, Tom Dhaene1, Stefaan
Cottenier2,3,4

1SUMO Lab, Ghent University – Belgique
2OCAS – Belgique

3Center for Molecular Modeling, Ghent University – Belgique
4Department of Electrical Energy, Metals, Mechanical Constructions and Systems,

Ghent University – Belgique

For decades, metallurgists have relied on intuitive physical features of the
microstructures such as the grain size to establish a quantitative link with the
properties of the material. However, for complex, multiphase steels features
such as the grain size cannot always be discerned and hence these traditional
methods fall short. In order to analyse these types of microstructures, methods
from computer vision have been successfully applied as an alternative. Inspired
by the surge of deep learning in many scientific fields, we investigate the poten-
tial of deep learning in extract relevant features from microstructures. To this
end, a supervised technique called ”Triplet Networks” is used. This method
allows to represent each microstructure in a low dimensional space where the
distance between microstructures belonging to the same class is minimized.
We obtain promising results for both optical and SEM images for challeng-
ing microstructure recognition tasks using very compact representations. We
compare our deep learning results with other computer vision methods.
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Hyperbolic Support Vector Machine P4

Felix Musil1, Federico Paruzzo1, Albert Hofstetter1, Sandip De1, Michele
Ceriotti1, Lyndon Emsley1

1COSMO, EPFL, Lausanne, Suisse

The calculation of chemical shifts in solids has enabled methods to deter-
mine crystal structures in powders. The dependence of chemical shifts on local
atomic environments sets them among the most powerful tools for structure
elucidation of powdered solids or amorphous materials. Unfortunately, this
dependency comes with the cost of high accuracy first-principle calculations
to qualitatively predict chemical shifts in solids. Machine learning methods
have recently emerged as a way to overcome the need for explicit high accu-
racy first-principle calculations. However, the vast chemical and combinatorial
space spanned by molecular solids, together with the strong dependency of
chemical shifts of atoms on their environment, poses a huge challenge for any
machine learning method. Here we propose a machine learning method based
on local environments to accurately predict chemical shifts of different molec-
ular solids and of different polymorphs within DFT accuracy (RMSE of 0.49
ppm (1H), 4.3ppm (13C), 13.3 ppm (15N), and 17.7 ppm (17O) with R2 of 0.97
for 1H, 0.99 for 13C, 0.99 for 15N, and 0.99 for 17O). We also demonstrate that
the trained model is able to correctly determine, based on the match between
experimentally-measured and ML-predicted shifts, structures of cocaine and
the drug 4-[4-(2-adamantylcarbamoyl)-5-tert-butylpyrazol-1-yl]benzoic acid in
a chemical shift based NMR crystallography approach.
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