ACCURATE DEEP NEURAL NETWORK POTENTIAL FOR PREDICTING PROPERTIES OF SOLIDS

ICMPE | Bochkarev Anton

Natalio Mingo, Ambroise van Roekeghem, Stefano Mossa
CEA, Grenoble

25 SEPTEMBER 2018
Machine learning and Artificial Neural Networks. What and why?

Artificial Neural Network for description of the interatomic potential

What it can do?
ML Applications
Scheme of the perceptron

\[f(\sum_{i=1}^{n} W_i X_i) \]

- X1
- X2
- X3

W1
W2
W3

Y

Neural network diagram
Descriptors

Representation of a crystal structure in a way suitable for the NN

Invariant with respect to:

- Translation and rotation
- Atom indexing
- System size and composition
HOW IT WORKS?

\[r_{K_iK_j} \Rightarrow f \left(r_{K_iK_j} \right) \]

\[f \left(r_{K_iK_j} \right) = e^{-\sigma \left(r_{K_iK_j} - \eta \right)^2} \]

\[Z_{K_i} \Rightarrow c_{K_i} \]

\[D_i^l = \sum_j c_{K_i}^l c_{K_j}^l e^{-\sigma \left(r_{K_iK_j} - \eta \right)^2} f_c \left(r_{K_iK_j}, R_c \right) \]

\[E_{tot} = \sum_{i=1}^{N} E_{K_i} \]

\[J = \sum_i \left(E_{tot} - E_{DFT} \right)^2 + \lambda \sum_i \left(F - F_{DFT} \right)^2 \]

\[F = -\frac{dE_{tot}}{dx} \]
Accuracy

- Energy: ~ 1 meV/atom
- Forces: 0.003 – 0.05 eV/Å

Features

- Output: Energy, Forces, Stress tensor
- Efficient training utilizes both energies and forces
- Training data may contain any number of atoms and species
Phases of SrTiO$_3$

High T phase

Low T phase

<table>
<thead>
<tr>
<th>Frequency, THz</th>
<th>Wave vector</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>G</td>
</tr>
<tr>
<td>8</td>
<td>X</td>
</tr>
<tr>
<td>6</td>
<td>M</td>
</tr>
<tr>
<td>4</td>
<td>G</td>
</tr>
<tr>
<td>2</td>
<td>R</td>
</tr>
<tr>
<td>0</td>
<td>X</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Frequency, THz</th>
<th>Wave vector</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>G</td>
</tr>
<tr>
<td>8</td>
<td>X</td>
</tr>
<tr>
<td>6</td>
<td>M</td>
</tr>
<tr>
<td>4</td>
<td>G</td>
</tr>
<tr>
<td>2</td>
<td>R</td>
</tr>
<tr>
<td>0</td>
<td>X</td>
</tr>
</tbody>
</table>
WHAT IT CAN DO?

Anharmonicity

300 K

- **108 atoms**
- **775 K**
- **2048 atoms**
- **10976 atoms**
CONCLUSIONS

Benefits

- Universality
- Accuracy
- Efficiency

Problems

- Data for training
- Black box style