

How many materials are left to discover?

An exploration of quaternary space

Presentation by Michael Sluydts

Research performed by Michael Sluydts, Michiel Larmuseau, Karel Dumon, Titus Crepain, Kurt Lejaeghere and Stefaan Cottenier

Center for Molecular Modeling Ghent University Belgium

Finding the right material

How many materials are there left to discover? How do we find them?

Can we create a Drake equation for materials?

Periodic table

hydrogen																	heium
																	1.2
H																	He
1.0079																	4.0026
lithium	beryflium	1										boron	carbon	nitrogen	oxygen	fluorine	neon
3	4											5	6	7	8	9	10
Li	Be											B	C	N	0	F	Ne
6.941	9.0122											10.811	12,011	14.007	15,999	18,998	20,190
sodium	magnesium	1										aluminium	silicon	phosphorus	saffur	chlorine	argon
11	12											13	14	15	16	17	18
Na	Mg											A	Si	P	S	CI	Ar
22.990	24,305											26.982	28.086	30,974	32,065	35,453	39,948
potassium	calcium	scandium	titanium	varadium	chromium	manganese	iron	cobeit	nickel	copper	zinc	galium	germanium	arsenic	selenium	bromine	krypton
19	20	21	22	23	24	25	26		28	29		31	32	33	34	35	36
ĸ	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.098	40.078	44,956	47,967	50.942	51,996	54,938	55.845	58,933	58,693	63.546	65.38	69.723	72.64	74,922	78.96	79,904	83,798
rubidium	strontium	yttrium	zirconium	niobium	molybdenum	technetium	ruthenium	medium	paladium	silver	cadmium	indium	tin	antimony	telurium	icdine	xenon
37	38	39	40	41	42	43	_**	43	4°.	-"	*	49	- 50		-22	33	
Rb	Sr	Y	Zr	ND	Mo	IC	Ru	Rh	Pd	Ag	Cd	In	Sn	SD	le		Xe
85.468	87.62	88.906	91.224	92,906	95.96	[98]	101.07	102.91	106.42	107.97	112.41	114.92	118,71	121.76	127.60	126.90	131.29
caesium	barium		hafnium	tantalum	tungsten	menium	osmium	iridium	platinum	gold	mercury	thalium	lead	bismuth	polonium	astatine	radon
55	56		72	73	74	75	76	1 77	78	79	80	81	82	83	84	85	86
Cs	Ba		Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
132,91	137.33		178.49	180.95	183.94	186.21	190.23	192.22	195.08	196.97	200.59	204,38	207.2	208.98	[299]	[270]	12221
francium	radium		rutherfordium	dubnium	seaborgium	bohram	hassium	metherium	darmstadturm	roentgenium							
87	88		104	105	106	107	108	109	110	111							
Fr	Ra		Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg							
[223]	[226]		[261]	[262]	[266]	[264]	[277]	[268]	12271	12721							

Γ	lanthanum	cerium	praseodymium	neodymium	promethium	samarium	europium	gadolinium	terbium	dysprasium	hoimium	erbium	thelium	ytterbium	lutetium
1	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
L	138,91	140.12	140,91	144.24	[145]	150.36	151.96	157.25	158,93	162.50	164.93	167.26	168,93	173.05	174,97
ſ	actinium	thorium	protactinium	uranium	neptunium	plutonium	americium	cutium	berkelium	californium	einsteinium	fermium	mendelevium	nobelium	lawrencium
1	89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
L	[227]	282.04	231,04	238.03	[297]	[244]	[243]	[247]	[247]	12511	[252]	[297]	[258]	[299]	[262]

Consider the first 86 elements in the periodic table

All combinations

Maximum at 43 elements: 10²⁵ materials

All combinations

Total dominated by maximum

Decomposition pathways

Decomposition pathways increase even faster

The current status

Only about 500 quaternaries are found each year

QZP space

Quaternary zintl phases provide an interesting subset of materials

	hydrogen 1																	helium 2
	H																	He
	1.0079																	4.0026
[lithium	beryllium											boron	carbon	nitrogen	oxygen	fluorine	neon
	3	4											5	6	7	8	9	10
	Li	Be											B	C	N	Ο	F	Ne
	6.941	9.0122											10.811	12.011	14.007	15.999	18.998	20.180
	sodium	magnesium											aluminium	silicon	phosphorus	sulfur	chlorine	argon
	11	12											13	14	15	16	17	18
	Na	Mg												Si	P	S	CI	Ar
	22.990	24.305											26.982	28.086	30.974	32.065	35.453	39.948
	potassium	calcium	scandium	titanium	vanadium	chromium	manganese	iron	cobalt	nicke	copper	zinc	gallium	germanium	arsenic	selenium	bromine	krypton
	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
		40.078	44.956	47.867	50.942	51.996	54.938	55.845	58.933	58.693	63.546	65.38	69.723	72.64	74.922	78.96	79.904	83.798
	rubidium	strontium	yttrium	zirconium	niobium	molybdenum	technetium	ruthenium	rhodium	palladium	silver	cadmium	indium	tin	antimony	tellurium	iodine	xenon
	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
	Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te		Xe
	85.468		88.906	91.224	92.906	95.96	[98]	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29
	caesium	barium	lanthanum	hafnium	tantalum	tungsten	rhenium	osmium	iridium	platinum	gold	mercury	thallium	lead	bismuth	polonium	astatine	radon
	55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
	Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
			138.91	178.49	180.95	183.84	186.21	190.23	192.22	195.08	196.97	200.59	204.38	207.2	208.98	[209]	[210]	[222]

Zintl phases combine covalent and ionic bonding in a single crystal

Visualizing QZP space

Let's create a map of QZP space:

- Extract all known structures from ICSD
- Discard partial occupancies (around 2/3)
- Generate features:

atomic+ stoichiometry + spacegroup

- Cluster with DBSCAN
- Visualize with t-SNE

Visualizing QZP space

Similar structures are clustered, but many are unique.

Drake for quaternaries

Estimating the number of materials based on observed QZP is like estimating the number of planets based on the milky way

Simplified Drake equation

 $N_{planets\,with\,life}$

$$=\frac{N_{planets,universe}}{N_{planets,MW}} \cdot N_{solar \ systems,MW} \cdot N_{\underline{observed}} \cdot N_{\underline{total}} \cdot f_{life}$$

Materials Drake equation

 $N_{useful\ materials}$

$$= \frac{N_{materials,space}}{N_{materials,QZP}} \cdot N_{material\ clusters,QZP} \cdot N_{\underline{observed}} \cdot N_{\underline{total}} \quad \cdot f_{use}$$

What's left of quaternary space?

Sample a few interesting families.

Families

Template : CsPbPSe₄

Spacegroup: Pnma Stoichiometry: 1:1:1:4 Template : K₂BaSnTe₄

Spacegroup: I-42m Stoichiometry: 2:1:1:4 Template : K₆AlSb₄Na₃

Spacegroup: P63mmc Stoichiometry: 6:1:4:3

6 known

1 known

4 known

Creating new materials

A database of hypothetical materials is created

CsPbPSe4 $K_2BaSnTe_4$ $K_6AlSb_4Na_3$ Combinations:316820161696

High-throughput ab initio screening

+- 20 calculations per material

> 100,000 calculations

Lost information

Most information is discarded

- Unstable materials: everything
- Stable materials: everything but the Ehull

Recycle with machine learning!

Surrogate modeling

Goal: learn the stable compositions as we perform calculations

Integrate with Queue Manager to prioritize calculations

Best model

Best performance for a Matern32 kernel with probability sampling

90% of stable materials are found in 300 samples

How many did we find?

Template : CsPbPSe₄

Spacegroup: Pnma Stoichiometry: 1:1:1:4 Template : K₂BaSnTe₄

Spacegroup: I-42m Stoichiometry: 2:1:1:4 Template : K₆AlSb₄Na₃

Spacegroup: P63mmc Stoichiometry: 6:1:4:3

108 stables 3168 total

1 in 30

116 stables 2016 total 1 in 20 115 stables 786 total 1 in 8

Drake for quaternaries

Materials Drake equation

$$N_{useful materials} = \frac{N_{materials,space}}{N_{materials,QZP}} \cdot N_{clusters,QZP} \cdot N_{\underline{observed}} \cdot N_{\underline{observed}} \cdot f_{use}$$

$$\frac{N_{materials,space}}{N_{materials,QZP}} \qquad \qquad \frac{46399}{509} = 91.15$$

$$N_{clusters,QZP} \qquad \qquad \pm 25 \ clusters + 75 \ unique \\ (+partial \ occupancies)$$

$$\frac{N_{\underline{observed}}}{N_{\underline{observed}}} \qquad \qquad \pm 110$$

$$f_{use} \qquad \qquad 1 \ (stable)$$

The result is around 1 million with 47,000 known and 500 new ones found each year.

Conclusions

- High-throughput screening allows us to explore large material spaces
- Machine learning enables the recycling of information
- We can now find more stables in a month than experiment in a year
- Experimental synthesis is still needed
- Geometric models will allow us to reuse information not only within a family,

but also between