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Bringing Fluctuations into Materials Modelling

Quantum nuclei with path integral methods
Anharmonic free energies in solids
Activated events and phase transitions
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Markland &MC, Nat. Rev. Chem. (2018); http://ipi-code.org

http://dx.doi.org/10.1038/s41570-017-0109


Bringing Fluctuations into Materials Modelling

Quantum nuclei with path integral methods
Anharmonic free energies in solids
Activated events and phase transitions

Binding Energy (meV/mol) fI fII ∆∆

Lattice Energy (PBE+D3) -1492 -1489 -3
Lattice Energy (PBE0+D3) -1271 -1271 0

Classical Harmonic -1500 -1487 -13
Quantum Anharmonic -1152 -1107 -45
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Rossi, Gasparotto &MC, Phys. Rev. Lett. (2016)

http://dx.doi.org/10.1103/PhysRevLett.117.115702
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Cheng, Paxton,MC, Phys. Rev. Lett. (2018)

http://dx.doi.org/10.1103/PhysRevLett.120.225901
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Cheng &MC, J. Chem. Phys. (2017)

http://dx.doi.org/10.1063/1.4973883


Why Machine Learning?

Statistical sampling requires large size and long time simulations, but also
an accurate evaluation of electronic energy and properties

Traditionally a tradeoff between cost, accuracy and transferability

Use machine learning to get around these limitations
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MyMachine Learning Wishlist

General applicability: suitable for all systems and all types of properties
Well-principled: incorporates structure and symmetries of physical laws
Not only a fancy interpolator: use ML to gain insights and understanding

ĤΨ = EΨ E (q) =
∑
ij

v (rij) + . . . , E (q) = ML (q| {qi ,Vi})
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MyMachine Learning Wishlist

General applicability: suitable for all systems and all types of properties
Well-principled: incorporates structure and symmetries of physical laws
Not only a fancy interpolator: use ML to gain insights and understanding

{Xi} ⇒ {xi} {xi} = argmin
∑
ij

[s (|Xi − Xj |)− s (|xi − xj |)]2
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MC, Tribello, Parrinello, PNAS (2011); Musil, [...],MC, Chem. Sci. (2018); http://interactive.sketchmap.org



A transferable ML model for
materials and molecules



A Universal Surrogate QuantumModel

Machine-learning can be regarded as a sophisticated interpolation
between a few known values of the properties
Can it be made as accurate and general as the Schrödinger equation?
Kernels are the main ingredient. Think of them as scalar products
between structures, K (A,B) ∼ 〈A|B〉.
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train

20.1

15.7

4.3

9.6

17.2

E (Aj) =
∑
i

wiK (Aj ,Ai)
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Symmetry-Adapted Atom-Density Representations

Structural representation based on a decorated atom-density vector |A〉
Physical symmetries are recovered by integration over group
Use tensor products to reduce information loss∣∣A(ν)

〉
T̂
leads naturally to atom-centered decomposition

Rotational average yields (ν + 1)-body correlation functions
∣∣X (ν)

〉
R̂
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Willatt, Musil,MC, https://arxiv.org/pdf/1807.00408



Symmetry-Adapted Atom-Density Representations

Structural representation based on a decorated atom-density vector |A〉
Physical symmetries are recovered by integration over group
Use tensor products to reduce information loss∣∣A(ν)

〉
T̂
leads naturally to atom-centered decomposition

Rotational average yields (ν + 1)-body correlation functions
∣∣X (ν)

〉
R̂

8 Michele Ceriotti https://cosmo.epfl.ch Machine-Learning Like a Physicist

Willatt, Musil,MC, https://arxiv.org/pdf/1807.00408



Symmetry-Adapted Atom-Density Representations

Structural representation based on a decorated atom-density vector |A〉
Physical symmetries are recovered by integration over group
Use tensor products to reduce information loss∣∣A(ν)

〉
T̂
leads naturally to atom-centered decomposition

Rotational average yields (ν + 1)-body correlation functions
∣∣X (ν)

〉
R̂

8 Michele Ceriotti https://cosmo.epfl.ch Machine-Learning Like a Physicist

Willatt, Musil,MC, https://arxiv.org/pdf/1807.00408



Symmetry-Adapted Atom-Density Representations

Structural representation based on a decorated atom-density vector |A〉
Physical symmetries are recovered by integration over group
Use tensor products to reduce information loss∣∣A(ν)

〉
T̂
leads naturally to atom-centered decomposition

Rotational average yields (ν + 1)-body correlation functions
∣∣X (ν)

〉
R̂

8 Michele Ceriotti https://cosmo.epfl.ch Machine-Learning Like a Physicist

Willatt, Musil,MC, https://arxiv.org/pdf/1807.00408



Symmetry-Adapted Atom-Density Representations

Structural representation based on a decorated atom-density vector |A〉
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〉
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Symmetry-Adapted Atom-Density Representations

Structural representation based on a decorated atom-density vector |A〉
Physical symmetries are recovered by integration over group
Use tensor products to reduce information loss∣∣A(ν)

〉
T̂
leads naturally to atom-centered decomposition

Rotational average yields (ν + 1)-body correlation functions
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〉
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Symmetry Adapted Representations & SOAP Kernel

Most of the existing density-based representations and kernels emerge
as special cases of this framework
Not necessary to use position basis. Radial functions and spherical
harmonics→ SOAP power spectrum and kernel
Other strategies to combine local kernels (entropy-regularized match)
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How well does this work?



100k Molecules with Coupled-Clusters

CCSD(T) Energetics on the QM9 - 114k useful predictions based on 20k
training calculations
1kcal/mol error for predicting CCSD(T) based on PM7 geometries;
0.18kcal/mol error for predicting CCSD(T) based on DFT geometries!
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Ramakrishnan et al., Scientific Data (2014); Ramakrishnan et al., JCTC (2015)
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Silicon Surfaces - Complexity in a Simple Material

More than just molecules: a SOAP-GAP model for Si can capture the dimer
tilt in Si(100)-2x1, and the delicate energy balance that determines the
stability of the Si(111) 7x7 DAS reconstruction
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Bartok, De, Kermode, Bernstein, Csanyi,MC, Science Advances (2017)

http://dx.doi.org/10.1126/sciadv.1701816


Accurate Predictions for Molecular Crystals

Substituted pentacenes - model systems for molecular electronics

Easily achieve sub-kcal/mol accuracy, with REMatch-SOAP kernels
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Musil, De, Yang, Campbell, Day,MC, Chemical Science (2018)

http://dx.doi.org/10.1039/C7SC04665K


Recognizing Active Ligands for Receptor Proteins

A SOAP-REMatch-based KSVM classifies active and inactive ligands with
99% accuracy; non-additive model is crucial!

Sensitivity analysis help identify the active “warhead” and could guide
drug design and optimization
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Bartok, De, Kermode, Bernstein, Csanyi,MC, Science Advances (2017)

http://dx.doi.org/10.1126/sciadv.1701816


Thorough Sampling of Compound Space
The train set should cover uniformly the relevant space

Farthest point sampling is a simple, constructive strategy to optimize the
training set, opening doors to active learning

15 Michele Ceriotti https://cosmo.epfl.ch Machine-Learning Like a Physicist

Bartok, De, Kermode, Bernstein, Csanyi,MC, Science Advances (2017)
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An Accurate & Inexpensive Error Estimation

Generate an ensemble of GPR models, and use distribution of predictions

y (X ) =
1

NRS

∑
i

y (i) (X ) , σ2 (X ) =
1

NRS − 1

∑
i

(
y (i) (X )− y (X )

)2
Verify accuracy by the distribution of errors P (|y (X )− yref (X )||σ (X ))

Use maximum-likelihood to calibrate the uncertainty σ (X )→ ασ (X )γ−1

16 Michele Ceriotti https://cosmo.epfl.ch Machine-Learning Like a Physicist

Musil, Willatt,MC arxiv.org/abs/1809.07653



More than Interatomic Potentials

Solid-state NMR relies on GIPAW-DFT to determine crystal structure of
molecular materials
Train a ML model on 2000 CSD structures, predict chemical shieldings
with DFT accuracy (RMSE H: 0.5, C: 5, N: 13, 0: 18 ppm)
Accurate enough to do structure determination!
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Insights from Machine Learning



Understanding the Range of Interactions

Environment kernels can be built for different cutoff radii
Dimensionality/accuracy tradeoff, a measure of the range of interactions
A multi-scale kernel K (A,B) =

∑
i wiKi (A,B) yields the best of all worlds -

chemical accuracy on QM9 with∼ 5000 train structures
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A Data-Driven Periodic Table of the Elements

How to learn with multiple species? Decorate atomic Gaussian with
elemental kets |H〉, |O〉, . . .
Expand each ket in a finite basis, |α〉 =

∑
J uαJ |J〉. Optimize coefficients

Dramatic reduction of the descriptor space, more effective learning . . .
. . . and as by-product get a data-driven version of the periodic table!

*

*

*
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Elpasolite dataset. Reference curve (red) from Faber et al. JCP (2018)
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Tensorial properties and beyond



Machine-Learning for Tensors

In a Gaussian Process framework, the kernel represents correlations
between properties. This must be reflected in how it transforms under
symmetry operations applied to the inputs

k (X ,X ′)↔ 〈y (X ) ; y (X ′)〉 , so k
(
ŜX , Ŝ ′X ′

)
↔
〈
y
(
ŜX
)

; y
(
Ŝ ′X ′

)〉
Properties that are invariant under Ŝ must be learned with a kernel that
should be insensitive to the operation

k
(
ŜX , Ŝ ′X ′

)
= k (X ,X ′)

How about machine-learning tensorial properties T? The kernel should be
covariant to rigid rotations - need a symmetry-adapted framework

kµν (X ,X ′)↔ 〈Tµ (X ) ;Tν (X ′)〉 → kµν
(
R̂X , R̂′X ′

)
= Rµµ′kµ′ν′ (X ,X ′)R′νν′

22 Michele Ceriotti https://cosmo.epfl.ch Machine-Learning Like a Physicist

Glielmo, Sollich, & De Vita, PRB (2017); Grisafi, Wilkins, Csányi, &MC, PRL (2018)

http://dx.doi.org/10.1103/PhysRevLett.120.036002


λ−SOAP: A SO (3) Compliant Kernel

Recall the definition of SOAP, based on the atom-density overlap
Each tensor can be decomposed into irreducible spherical components
Tλ, corresponding to the representations of SO (3)
A hierarchy of λ-SOAP kernels can be defined to learn tensorial quantities

k (X ,X ′) =

∫
dR̂κ

(
X , R̂X ′

)
, κ (X ,X ′) =

∣∣∣∣∫ ψX (x)ψX ′ (x)dx
∣∣∣∣2

10.1103/PhysRevLett.120.036002
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Grisafi, Wilkins, Csányi, &MC, PRL (2018)
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image fro Wikipedia

T λµ
(
R̂ (X )

)
= Dλµµ′

(
R̂
)
T λµ′ (X )

10.1103/PhysRevLett.120.036002
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Each tensor can be decomposed into irreducible spherical components
Tλ, corresponding to the representations of SO (3)
A hierarchy of λ-SOAP kernels can be defined to learn tensorial quantities
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Learning the Dielectric Response of Water

A demonstration of the SA-GPR framework, and the λ-SOAP kernel -
learning the dielectric response of water oligomers
The kernels for multi-atomic systems can be built with an additive ansatz -
and that gives meaningful partitioning in molecular contributions
Works great for bulk systems (liquid & ice) after fixing non-additive terms

Kµν (A,B) =
1

NANB

∑
ij

kµν
(
X A

i ,X B
j

)

10.1103/PhysRevLett.120.036002

24 Michele Ceriotti https://cosmo.epfl.ch Machine-Learning Like a Physicist

Grisafi, Wilkins, Csányi, &MC, PRL (2018)



Learning the Dielectric Response of Water

A demonstration of the SA-GPR framework, and the λ-SOAP kernel -
learning the dielectric response of water oligomers
The kernels for multi-atomic systems can be built with an additive ansatz -
and that gives meaningful partitioning in molecular contributions
Works great for bulk systems (liquid & ice) after fixing non-additive terms

Clausius-Mossotti: α = (ε− 1)(ε+ 2)−1V

10.1103/PhysRevLett.120.036002
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A Transferable Model of the Electron Density

Write the density in atom-centered terms. Use a φk ≡ RnY l
m expansion.

F (ρ) =

∫
dr

∣∣∣∣∣∑
ik

cikφk (r− ri)

∣∣∣∣∣
2

+ η |c|2 , cinlm =
∑
jm′

xjnlmk
l
mm′

(
Xi ,Xj

)
Machine-learn directly the full density (non-orthogonal basis is tricky!)

Highly transferable: learn on C4, predict on C8

25 Michele Ceriotti https://cosmo.epfl.ch Machine-Learning Like a Physicist
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MyWishlist - Revisited

General applicability: suitable for all systems and all types of properties
‘‘Nearsightedness’’ of electronic matter ↔ local environment decomposition
Excellent perfomance on benchmark DBs, accurate & cheap error estimate
Predict CCSD from PM7, potentials for solids, 99% prediction of drug activity,
silicon & molecular crystals, NMR shieldings in solids
Huge potential of a SA-GPR framework to learn tensors - electric
multipoles and response, but also densities, Hamiltonians, . . .

Not only a fancy interpolator: use ML to gain insights and understanding
Structure-energy-property maps based on the kernel distance
Understand the nature of chemical interactions by dissecting the ML model

26 Michele Ceriotti https://cosmo.epfl.ch Machine-Learning Like a Physicist

(Development) code available on http://cosmo-epfl.github.io & http://sketchmap.org/



A Map to Navigate Materials & Molecules

Kernel-induced distances can be also used as the basis of clustering and
dimensionality-reduction techniques

Generate insightful representations of the (free)-energy landscape of
complex systems

27 Michele Ceriotti https://cosmo.epfl.ch Machine-Learning Like a Physicist

MC, Tribello, Parrinello, PNAS (2011).
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Measuring Distances Between Materials

The crucial ingredient in machine-learning is a method to compare the
items whose properties should be predicted

A distance D (A,B) or a kernel function K (A,B) can be used to assess the
(dis)-similarity between items in a set

Under reasonable assumptions one can always convert a distance D (A,B)
to a kernel, or to fingerprints and vice versa

28 Michele Ceriotti https://cosmo.epfl.ch Machine-Learning Like a Physicist
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How accurate can we get (and what we learn)?

What happens if we increase the train set fraction?
Can we improve the accuracy by tuning the kernel?

QM9, MAE on atomization energies (eV)

90% TRAIN, arxiv:1702.0553
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καβ = e−(Eα−Eβ)
2
/2λ2
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A Simple (but Limited) Solution

For rigid molecules, one can convert the tensor to a reference frame and
learn individual components using an invariant kernel

kµν (X ,X ′) ≡ R (X )µj k (X ,X ′)R (X ′)νj ,

k (X ,X ′) = k̃ (R (X )X ,R (X ′)X ′)
Learning of second-harmonic response of water solutions (SHS
experiments)

30 Michele Ceriotti https://cosmo.epfl.ch Machine-Learning Like a Physicist

Bereau, Andrienko, von Lilienfeld, JCTC (2015); Liang, Tocci, Wilkins, Grisafi, Roke, &MC, PRB (2017);



Understanding Errors in Quantum Calculations

Learning differences between electronic structure methods is simpler

Atom-centered energetics give insight into the impact of approximations

31 Michele Ceriotti https://cosmo.epfl.ch Machine-Learning Like a Physicist

Ramakrishnan et al., JCTC (2015); M. Marianski et al., J. Chem. Theory Comput. 12, 6157 (2016);
Bartok, De, Kermode, Bernstein, Csanyi,MC, Science Advances (2017)



Structures as Combinations of Local Environments

One can write structural kernels as a combination of local kernels
Entropy-regularized Wasserstein distance interpolates between
‘‘best-match’’ and ‘‘average’’ constructions

32 Michele Ceriotti https://cosmo.epfl.ch Machine-Learning Like a Physicist
De, Bartók, Csányi,MC, PCCP (2016); M. Cuturi, NIPS (2013);
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Additive Property Models & Beyond

Crucial observation: learning with an average kernel is equivalent to
learning an atom-centered additive energy model

E (A) =
∑

i WiK (A,Ai)
K (A,B) =

∑
i∈A,j∈B k

(
Xi ,Xj

) ⇐⇒ ε (X ) =
∑

i wik (X ,Xi)
E (A) =

∑
i∈A ε (Xi)

Entropy-regularized match provides a natural way to go beyond additive
models, retaining a local environment expansion

33 Michele Ceriotti https://cosmo.epfl.ch Machine-Learning Like a Physicist



Predicting the Full Polarizability of Molecules

Benchmarking polarizability learning on the QM7b dataset. DFT and
high-end coupled-cluster references (Rob DiStasio@Cornell)

WIP (∗<2000 training structures, no optimization!) - we can predict αwith
better accuracy than DFT.
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〈·〉 , σ (·) [a.u.] αxx αyy αzz αxy αxz αyz

DFT vs CCSD 2.6, 2.6 2.0, 2.1 0.9, 0.9 0.6, 1.3 0.0, 0.6 0.1, 0.6
SA-GPR? vs CCSD 0.0, 1.5 0.0, 1.4 0.0, 0.9 0.0, 1.0 0.0, 0.7 0.0, 0.6

∆SA-GPR? 0.0, 0.7 0.0, 0.6 0.0, 0.3 0.0, 0.4 0.0, 0.3 0.0, 0.2
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A Generalized Convex Hull Construction

The convex hull construction determines phases that are stable for given
thermodynamic boundary conditions (volume, composition, ...)
We use a kernel principal component analysis to assign abstract
descriptors to each phase and build a generalized convex hull.
Probabilistic construction, with uncertainty quantification
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A Generalized Convex Hull Construction

36 Michele Ceriotti https://cosmo.epfl.ch Machine-Learning Like a Physicist

Engel, Anelli,MC, Pickard & Needs, Nature Comm. (2018)
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