## **Machine-Learning Like a Physicist**

Michele Ceriotti https://cosmo.epfl.ch

AI-4-MATER September 2018, ICMPE





#### http://cosmo.epfl.ch 🔰 Follow @COSMO\_EPFL





CCMX Competence Centre for Materials Science and Technology



#### **S.De, F.Musil, M.Willatt A.Grisafi, D.Wilkins,** A. Anelli, E. Engel, G. Imbalzano

G.Csányi, A.Bartók, C.Poelking, J.Kermode, N.Bernstein F.Paruzzo, A.Hofstetter, L.Emsley C.Corminboeuf, J.Behler, A.Paxton

#### • Quantum nuclei with path integral methods

- Anharmonic free energies in solids
- Activated events and phase transitions



Li, Walker, Michaelides, PNAS (2011); MC et al., PNAS (2013); MC et al., Chem. Rev. (2016)

#### • Quantum nuclei with path integral methods

- Anharmonic free energies in solids
- Activated events and phase transitions



Markland & MC, Nat. Rev. Chem. (2018); http://ipi-code.org

- Quantum nuclei with path integral methods
- Anharmonic free energies in solids
- Activated events and phase transitions



Rossi, Gasparotto & MC, Phys. Rev. Lett. (2016)

- Quantum nuclei with path integral methods
- Anharmonic free energies in solids
- Activated events and phase transitions



Cheng, Paxton, MC, Phys. Rev. Lett. (2018)

- Quantum nuclei with path integral methods
- Anharmonic free energies in solids
- Activated events and phase transitions



Rossi, Gasparotto & MC, Phys. Rev. Lett. (2016)

- Quantum nuclei with path integral methods
- Anharmonic free energies in solids
- Activated events and phase transitions





Cheng & MC, J. Chem. Phys. (2017)

#### Why Machine Learning?

- Statistical sampling requires large size and long time simulations, but also an accurate evaluation of electronic energy and properties
- Traditionally a tradeoff between cost, accuracy and transferability
- Use machine learning to get around these limitations



#### Why Machine Learning?

- Statistical sampling requires large size and long time simulations, but also an accurate evaluation of electronic energy and properties
- Traditionally a tradeoff between cost, accuracy and transferability
- Use machine learning to get around these limitations



### My Machine Learning Wishlist

- General applicability: suitable for all systems and all types of properties
- Well-principled: incorporates structure and symmetries of physical laws
- Not only a fancy interpolator: use ML to gain insights and understanding



$$\hat{\mathcal{H}}\Psi = E\Psi \quad E\left(\mathbf{q}\right) = \sum_{ij} v\left(r_{ij}\right) + \dots, \quad E\left(\mathbf{q}\right) = ML\left(\mathbf{q} \mid \{\mathbf{q}_{i}, V_{i}\}\right)$$

## My Machine Learning Wishlist

- General applicability: suitable for all systems and all types of properties
- Well-principled: incorporates structure and symmetries of physical laws
- Not only a fancy interpolator: use ML to gain insights and understanding



MC, Tribello, Parrinello, PNAS (2011); Musil, [...], MC, Chem. Sci. (2018); http://interactive.sketchmap.org

## A transferable ML model for materials and molecules

- Machine-learning can be regarded as a sophisticated interpolation between a few known values of the properties
- Can it be made as accurate and general as the Schrödinger equation?
- Kernels are the main ingredient. Think of them as scalar products between structures, K (A, B) ~ ⟨A|B⟩.



- Machine-learning can be regarded as a sophisticated interpolation between a few known values of the properties
- Can it be made as accurate and general as the Schrödinger equation?
- Kernels are the main ingredient. Think of them as scalar products between structures, K (A, B) ~ ⟨A|B⟩.



$$E(A_j) = \sum_i w_i K(A_j, A_i)$$

- Machine-learning can be regarded as a sophisticated interpolation between a few known values of the properties
- Can it be made as accurate and general as the Schrödinger equation?
- Kernels are the main ingredient. Think of them as scalar products between structures, K (A, B) ~ ⟨A|B⟩.



$$E(\mathcal{A}) = \sum_{i} w_{i} K(\mathcal{A}, \mathcal{A}_{i})$$

- Machine-learning can be regarded as a sophisticated interpolation between a few known values of the properties
- Can it be made as accurate and general as the Schrödinger equation?
- Kernels are the main ingredient. Think of them as scalar products between structures, K (A, B) ∼ ⟨A|B⟩.



- ullet Structural representation based on a decorated atom-density vector  $|\mathcal{A}
  angle$
- Physical symmetries are recovered by integration over group
- Use tensor products to reduce information loss
- $|\mathcal{A}^{(
  u)}
  angle_{\hat{ au}}$  leads naturally to atom-centered decomposition
- Rotational average yields (u+1)-body correlation functions  $ig|{\mathcal X}^{(
  u)}ig
  angle_{\hat{R}}$



Willatt, Musil, MC, https://arxiv.org/pdf/1807.00408

- ullet Structural representation based on a decorated atom-density vector  $|\mathcal{A}
  angle$
- Physical symmetries are recovered by integration over group
- Use tensor products to reduce information loss
- $|\mathcal{A}^{(
  u)}
  angle_{\hat{ au}}$  leads naturally to atom-centered decomposition
- ullet Rotational average yields (u+1)-body correlation functions  $ig|{\mathcal X}^{(
  u)}
  ight
  angle_{\hat{m R}}$



$$\langle \mathbf{r} | \mathcal{A} \rangle = \sum_{i} g(\mathbf{r} - \mathbf{r}_{i}) | \alpha_{i} \rangle$$

Willatt, Musil, MC, https://arxiv.org/pdf/1807.00408

- ullet Structural representation based on a decorated atom-density vector  $|\mathcal{A}
  angle$
- Physical symmetries are recovered by integration over group
- Use tensor products to reduce information loss
- $|\mathcal{A}^{(
  u)}
  angle_{\hat{ au}}$  leads naturally to atom-centered decomposition
- ullet Rotational average yields (u+1)-body correlation functions  $ig|{\mathcal X}^{(
  u)}
  angle_{_{oldsymbol{\hat{R}}}}$

$$\int \mathrm{d}\hat{T} \left\langle \mathbf{r} \middle| \hat{T} \middle| \mathcal{A} \right\rangle = \sum_{i} \int \mathrm{d}\mathbf{t} \, g(\mathbf{r} + \mathbf{t} - \mathbf{r}_{i}) \left| \alpha_{i} \right\rangle = \sum_{\alpha} N_{\alpha} \left| \alpha \right\rangle$$
Willatt, Musil, MC, https://arxiv.org/pdf/1807.00408

- ullet Structural representation based on a decorated atom-density vector  $|\mathcal{A}
  angle$
- Physical symmetries are recovered by integration over group
- Use tensor products to reduce information loss
- $|\mathcal{A}^{(
  u)}
  angle_{\hat{ au}}$  leads naturally to atom-centered decomposition
- ullet Rotational average yields (u+1)-body correlation functions  $ig|{\mathcal X}^{(
  u)}
  ight
  angle_{\hat{m k}}$



# $\int \mathrm{d}\hat{T} \, \left\langle \mathbf{r} \right| \hat{T} \left| \mathcal{A} \right\rangle \left\langle \mathbf{r}' \right| \hat{T} \left| \mathcal{A} \right\rangle = \int \mathrm{d}\mathbf{r}' \left\langle \mathbf{r}' \right| \mathcal{A} \right\rangle \left\langle \mathbf{r}' + \mathbf{r} \right| \mathcal{A} \right\rangle$

Willatt, Musil, MC, https://arxiv.org/pdf/1807.00408

- $\bullet~$  Structural representation based on a decorated atom-density vector  $|\mathcal{A}\rangle$
- Physical symmetries are recovered by integration over group
- Use tensor products to reduce information loss
- $|\mathcal{A}^{(
  u)}
  angle_{\hat{ au}}$  leads naturally to atom-centered decomposition
- Rotational average yields ( $\nu$  + 1)-body correlation functions  $|\mathcal{X}^{(\nu)}\rangle_{\hat{R}}$

$$\langle \mathbf{r} | \mathcal{A}^{(2)} \rangle_{\hat{T}} = \sum_{ij} | \alpha_i \alpha_j \rangle g(\mathbf{r} - \mathbf{r}_{ij})$$

$$= \sum_j | \alpha_j \rangle \langle \mathbf{r} | \mathcal{X}_j \rangle$$

$$\langle \mathbf{r} | \mathcal{X}_1 \rangle$$

Willatt, Musil, MC, https://arxiv.org/pdf/1807.00408

- Structural representation based on a decorated atom-density vector  $|\mathcal{A}
  angle$
- Physical symmetries are recovered by integration over group
- Use tensor products to reduce information loss
- $|\mathcal{A}^{(
  u)}
  angle_{\hat{ au}}$  leads naturally to atom-centered decomposition
- Rotational average yields (u + 1)-body correlation functions  $\left| \mathcal{X}^{(
  u)} 
  ight
  angle_{\hat{R}}$



- Most of the existing density-based representations and kernels emerge as special cases of this framework
- $\bullet\,$  Not necessary to use position basis. Radial functions and spherical harmonics  $\to\,$  SOAP power spectrum and kernel
- Other strategies to combine local kernels (entropy-regularized match)



- Most of the existing density-based representations and kernels emerge as special cases of this framework
- $\bullet\,$  Not necessary to use position basis. Radial functions and spherical harmonics  $\to\,$  SOAP power spectrum and kernel
- Other strategies to combine local kernels (entropy-regularized match)



- Most of the existing density-based representations and kernels emerge as special cases of this framework
- $\bullet\,$  Not necessary to use position basis. Radial functions and spherical harmonics  $\to\,$  SOAP power spectrum and kernel
- Other strategies to combine local kernels (entropy-regularized match)



- Most of the existing density-based representations and kernels emerge as special cases of this framework
- $\bullet\,$  Not necessary to use position basis. Radial functions and spherical harmonics  $\to\,$  SOAP power spectrum and kernel
- Other strategies to combine local kernels (entropy-regularized match)



- Most of the existing density-based representations and kernels emerge as special cases of this framework
- $\bullet\,$  Not necessary to use position basis. Radial functions and spherical harmonics  $\to\,$  SOAP power spectrum and kernel
- Other strategies to combine local kernels (entropy-regularized match)



- Most of the existing density-based representations and kernels emerge as special cases of this framework
- $\bullet\,$  Not necessary to use position basis. Radial functions and spherical harmonics  $\to\,$  SOAP power spectrum and kernel
- Other strategies to combine local kernels (entropy-regularized match)



 $\left\langle nn'l \middle| \mathcal{X}^{(2)} \right\rangle_{\hat{R}} = \sum_m \left\langle nlm \middle| \mathcal{X} \right\rangle \left\langle n'lm \middle| \mathcal{X} \right\rangle$ 

Bartók, Kondor, Csányi, PRB (2013)

- Most of the existing density-based representations and kernels emerge as special cases of this framework
- $\bullet\,$  Not necessary to use position basis. Radial functions and spherical harmonics  $\to$  SOAP power spectrum and kernel
- Other strategies to combine local kernels (entropy-regularized match)

$$K(A,B) = \sum_{i \in A, j \in B} P_{ij}k(\mathcal{X}_i, \mathcal{X}_j)$$



$$P_{ij} = \frac{1}{N_A N_B}$$

De, Bartók, Csányi, MC, PCCP (2016); M. Cuturi, NIPS (2013);

- Most of the existing density-based representations and kernels emerge as special cases of this framework
- Not necessary to use position basis. Radial functions and spherical harmonics  $\rightarrow$  SOAP power spectrum and kernel
- Other strategies to combine local kernels (entropy-regularized match)

$$K(A,B) = \sum_{i \in A, j \in B} P_{ij}k(\mathcal{X}_i, \mathcal{X}_j)$$



$$\hat{K}^{\gamma}(A, B) \propto \max_{\mathbf{P} \in \mathcal{U}} \sum_{ij} P_{ji} (C_{ij}^{A, B} - \gamma \ln P_{ji})$$

De, Bartók, Csányi, MC, PCCP (2016); M. Cuturi, NIPS (2013);

## How well does this work?

## 100k Molecules with Coupled-Clusters

- CCSD(T) Energetics on the QM9 114k *useful* predictions based on 20k training calculations
- 1kcal/mol error for predicting CCSD(T) based on PM7 geometries; 0.18kcal/mol error for predicting CCSD(T) based on DFT geometries!



Ramakrishnan et al., Scientific Data (2014); Ramakrishnan et al., JCTC (2015)

#### 100k Molecules with Coupled-Clusters

- CCSD(T) Energetics on the QM9 114k useful predictions based on 20k training calculations
- 1kcal/mol error for predicting CCSD(T) based on PM7 geometries;
   0.18kcal/mol error for predicting CCSD(T) based on DFT geometries!



Bartok, De, Kermode, Bernstein, Csanyi, MC, Science Advances (2017)

#### Silicon Surfaces - Complexity in a Simple Material

 More than just molecules: a SOAP-GAP model for Si can capture the dimer tilt in Si(100)-2x1, and the delicate energy balance that determines the stability of the Si(111) 7x7 DAS reconstruction



Bartok, De, Kermode, Bernstein, Csanyi, MC, Science Advances (2017)

#### Accurate Predictions for Molecular Crystals

- Substituted pentacenes model systems for molecular electronics
- Easily achieve sub-kcal/mol accuracy, with REMatch-SOAP kernels



Musil, De, Yang, Campbell, Day, MC, Chemical Science (2018)
# **Recognizing Active Ligands for Receptor Proteins**

- A SOAP-REMatch-based KSVM classifies active and inactive ligands with 99% accuracy; non-additive model is crucial!
- Sensitivity analysis help identify the active "warhead" and could guide drug design and optimization



Bartok, De, Kermode, Bernstein, Csanyi, MC, Science Advances (2017)

# Thorough Sampling of Compound Space

- The train set should cover uniformly the relevant space
  - Farthest point sampling is a simple, constructive strategy to optimize the training set, opening doors to active learning



Bartok, De, Kermode, Bernstein, Csanyi, MC, Science Advances (2017)

MC, Tribello, Parrinello, PNAS (2011); http://sketchmap.org Machine-Learning Like a Physicist

# Thorough Sampling of Compound Space

- The train set should cover uniformly the relevant space
  - Farthest point sampling is a simple, constructive strategy to optimize the training set, opening doors to active learning



Bartok, De, Kermode, Bernstein, Csanyi, MC, Science Advances (2017)

MC, Tribello, Parrinello, PNAS (2011); http://sketchmap.org Machine-Learning Like a Physicist

#### An Accurate & Inexpensive Error Estimation

• Generate an ensemble of GPR models, and use distribution of predictions

$$y(\mathcal{X}) = \frac{1}{N_{RS}} \sum_{i} y^{(i)}(\mathcal{X}), \qquad \sigma^{2}(\mathcal{X}) = \frac{1}{N_{RS} - 1} \sum_{i} \left( y^{(i)}(\mathcal{X}) - y(\mathcal{X}) \right)^{2}$$

- Verify accuracy by the distribution of errors  $P(|y(\mathcal{X}) y_{\mathsf{ref}}(\mathcal{X})||\sigma(\mathcal{X}))$
- Use maximum-likelihood to calibrate the uncertainty  $\sigma\left(\mathcal{X}
  ight) olpha\sigma\left(\mathcal{X}
  ight)^{\gamma-1}$



Musil, Willatt, MC arxiv.org/abs/1809.07653

#### More than Interatomic Potentials

- Solid-state NMR relies on GIPAW-DFT to determine crystal structure of molecular materials
- Train a ML model on 2000 CSD structures, predict chemical shieldings with DFT accuracy (RMSE H: 0.5, C: 5, N: 13, 0: 18 ppm)

Accurate enough to do structure determination!



w/Emsley, Paruzzo, Hofstetter, http://shiftml.org

#### More than Interatomic Potentials

- Solid-state NMR relies on GIPAW-DFT to determine crystal structure of molecular materials
- Train a ML model on 2000 CSD structures, predict chemical shieldings with DFT accuracy (RMSE H: 0.5, C: 5, N: 13, 0: 18 ppm)
- Accurate enough to do structure determination!



w/Emsley, Paruzzo, Hofstetter, http://shiftml.org

#### More than Interatomic Potentials

- Solid-state NMR relies on GIPAW-DFT to determine crystal structure of molecular materials
- Train a ML model on 2000 CSD structures, predict chemical shieldings with DFT accuracy (RMSE H: 0.5, C: 5, N: 13, 0: 18 ppm)
- Accurate enough to do structure determination!



w/Emsley, Paruzzo, Hofstetter, http://shiftml.org

# **Insights from Machine Learning**

# Understanding the Range of Interactions

- Environment kernels can be built for different cutoff radii
- Dimensionality/accuracy tradeoff, a measure of the range of interactions
- A multi-scale kernel K (A, B) = ∑<sub>i</sub> w<sub>i</sub>K<sub>i</sub> (A, B) yields the best of all worlds chemical accuracy on QM9 with ~ 5000 train structures



Bartók, De, Kermode, Bernstein, Csányi, MC, Science Advances (2017)

#### Understanding the Range of Interactions

- Environment kernels can be built for different cutoff radii
- Dimensionality/accuracy tradeoff, a measure of the range of interactions
- A multi-scale kernel K (A, B) = ∑<sub>i</sub> w<sub>i</sub>K<sub>i</sub> (A, B) yields the best of all worlds chemical accuracy on QM9 with ~ 5000 train structures



Bartók, De, Kermode, Bernstein, Csányi, MC, Science Advances (2017)

- How to learn with multiple species? Decorate atomic Gaussian with elemental kets  $|H\rangle, |O\rangle, \ldots$
- Expand each ket in a finite basis,  $|lpha
  angle = \sum_J u_{lpha J} |J
  angle$ . Optimize coefficients
- Dramatic reduction of the descriptor space, more effective learning . . .
- . . . and as by-product get a data-driven version of the periodic table!



- How to learn with multiple species? Decorate atomic Gaussian with elemental kets  $|H\rangle,\,|O\rangle,\ldots$
- Expand each ket in a finite basis,  $|\alpha\rangle = \sum_J u_{\alpha J} |J\rangle$ . Optimize coefficients
- Dramatic reduction of the descriptor space, more effective learning . . .
   . . . and as by-product get a data-driven version of the periodic table!

$$\begin{aligned} |\mathbf{H}\rangle &= 0.5 |\bigstar\rangle + 0.1 |\bigstar\rangle + 0.2 |\bigstar\rangle \\ |\mathbf{C}\rangle &= 0.2 |\bigstar\rangle + 0.8 |\bigstar\rangle + 0.3 |\bigstar\rangle \\ |\mathbf{O}\rangle &= 0.1 |\bigstar\rangle + 0.1 |\bigstar\rangle + 0.6 |\bigstar\rangle \end{aligned}$$

Empedocles et al. (ca 360BC). Metaphor courtesy of Albert Bartók

- How to learn with multiple species? Decorate atomic Gaussian with elemental kets  $|H\rangle, |O\rangle, \ldots$
- Expand each ket in a finite basis,  $|lpha
  angle = \sum_J u_{lpha J} |J
  angle$ . Optimize coefficients
- Dramatic reduction of the descriptor space, more effective learning . . .
- . . . and as by-product get a data-driven version of the periodic table!



Elpasolite dataset. Reference curve (red) from Faber et al. JCP (2018)

- How to learn with multiple species? Decorate atomic Gaussian with elemental kets  $|H\rangle, |O\rangle, \ldots$
- Expand each ket in a finite basis,  $|lpha
  angle = \sum_J u_{lpha J} |J
  angle$ . Optimize coefficients
- Dramatic reduction of the descriptor space, more effective learning . . .
- . . . and as by-product get a data-driven version of the periodic table!



Willatt, Musil, MC, https://arxiv.org/abs/1807.00236

# **Tensorial properties and beyond**

#### Machine-Learning for Tensors

 In a Gaussian Process framework, the kernel represents correlations between properties. This must be reflected in how it transforms under symmetry operations applied to the inputs

$$k(\mathcal{X}, \mathcal{X}') \leftrightarrow \langle y(\mathcal{X}); y(\mathcal{X}') \rangle, \text{ so } k\left(\hat{S}\mathcal{X}, \hat{S}'\mathcal{X}'\right) \leftrightarrow \left\langle y\left(\hat{S}\mathcal{X}\right); y\left(\hat{S}'\mathcal{X}'\right) \right\rangle$$

• Properties that are *invariant* under  $\hat{S}$  must be learned with a kernel that should be insensitive to the operation

$$k\left(\hat{S}\mathcal{X},\hat{S}'\mathcal{X}'\right)=k\left(\mathcal{X},\mathcal{X}'\right)$$

• How about machine-learning tensorial properties **T**? The kernel should be *covariant* to rigid rotations - need a symmetry-adapted framework

 $k_{\mu\nu}\left(\mathcal{X},\mathcal{X}'\right)\leftrightarrow\left\langle \mathsf{T}_{\mu}\left(\mathcal{X}\right);\mathsf{T}_{\nu}\left(\mathcal{X}'\right)\right\rangle \rightarrow\,k_{\mu\nu}\left(\hat{\mathsf{R}}\mathcal{X},\hat{\mathsf{R}}'\mathcal{X}'\right)=\mathsf{R}_{\mu\mu'}k_{\mu'\nu'}\left(\mathcal{X},\mathcal{X}'\right)\mathsf{R}_{\nu\nu'}'$ 



Glielmo, Sollich, & De Vita, PRB (2017); Grisafi, Wilkins, Csányi, & MC, PRL (2018)

Machine-Learning Like a Physicist

#### • Recall the definition of SOAP, based on the atom-density overlap

- Each tensor can be decomposed into irreducible spherical components  $\mathbf{T}^{\lambda}$ , corresponding to the representations of SO(3)
- A hierarchy of  $\lambda$ -SOAP kernels can be defined to learn tensorial quantities



- Recall the definition of SOAP, based on the atom-density overlap
- Each tensor can be decomposed into irreducible spherical components  $\mathbf{T}^{\lambda}$ , corresponding to the representations of SO(3)
- A hierarchy of  $\lambda$ -SOAP kernels can be defined to learn tensorial quantities



- Recall the definition of SOAP, based on the atom-density overlap
- Each tensor can be decomposed into irreducible spherical components
   T<sup>λ</sup>, corresponding to the representations of SO(3)
- A hierarchy of  $\lambda$ -SOAP kernels can be defined to learn tensorial quantities



$$\mathbf{k}_{\mu\nu}^{\lambda}\left(\mathcal{X},\mathcal{X}'\right) = \int \mathrm{d}\hat{\mathbf{R}} \mathbf{D}_{\mu\nu}^{\lambda}\left(\hat{\mathbf{R}}\right) \kappa\left(\mathcal{X},\hat{\mathbf{R}}\mathcal{X}'\right)$$

- Recall the definition of SOAP, based on the atom-density overlap
- Each tensor can be decomposed into irreducible spherical components
   T<sup>λ</sup>, corresponding to the representations of SO(3)
- A hierarchy of  $\lambda$ -SOAP kernels can be defined to learn tensorial quantities



$$k_{\mu\nu}^{\lambda}\left(\mathcal{X},\mathcal{X}'\right) = \int \mathrm{d}\hat{R} D_{\mu\nu}^{\lambda}\left(\hat{R}\right) \kappa\left(\mathcal{X},\hat{R}\mathcal{X}'\right)$$

- Recall the definition of SOAP, based on the atom-density overlap
- Each tensor can be decomposed into irreducible spherical components  $\mathbf{T}^{\lambda}$ , corresponding to the representations of SO(3)
- A hierarchy of  $\lambda$ -SOAP kernels can be defined to learn tensorial quantities



$$k_{\mu\nu}^{\lambda}\left(\mathcal{X},\mathcal{X}'\right) = \int \mathrm{d}\hat{R} D_{\mu\nu}^{\lambda}\left(\hat{R}\right) \kappa\left(\mathcal{X},\hat{R}\mathcal{X}'\right)$$

- Recall the definition of SOAP, based on the atom-density overlap
- Each tensor can be decomposed into irreducible spherical components
   T<sup>λ</sup>, corresponding to the representations of SO(3)
- A hierarchy of  $\lambda$ -SOAP kernels can be defined to learn tensorial quantities



$$k_{\mu
u}^{\lambda}\left(\mathcal{X},\mathcal{X}'
ight)=\int\mathrm{d}\hat{R}D_{\mu
u}^{\lambda}\left(\hat{R}
ight)\kappa\left(\mathcal{X},\hat{R}\mathcal{X}'
ight)$$

- Recall the definition of SOAP, based on the atom-density overlap
- Each tensor can be decomposed into irreducible spherical components
   T<sup>λ</sup>, corresponding to the representations of SO(3)
- A hierarchy of  $\lambda$ -SOAP kernels can be defined to learn tensorial quantities



$$k_{\mu\nu}^{\lambda}\left(\mathcal{X},\mathcal{X}'\right) = \int \mathrm{d}\hat{R} D_{\mu\nu}^{\lambda}\left(\hat{R}\right) \kappa\left(\mathcal{X},\hat{R}\mathcal{X}'\right)$$

- Recall the definition of SOAP, based on the atom-density overlap
- Each tensor can be decomposed into irreducible spherical components
   T<sup>λ</sup>, corresponding to the representations of SO(3)
- A hierarchy of  $\lambda$ -SOAP kernels can be defined to learn tensorial quantities



$$k_{\mu\nu}^{\lambda}\left(\mathcal{X},\mathcal{X}'\right) = \int \mathrm{d}\hat{R} D_{\mu\nu}^{\lambda}\left(\hat{R}\right) \kappa\left(\mathcal{X},\hat{R}\mathcal{X}'\right)$$

# Learning the Dielectric Response of Water

- A demonstration of the SA-GPR framework, and the  $\lambda$ -SOAP kernel learning the dielectric response of water oligomers
- The kernels for multi-atomic systems can be built with an additive ansatz and that gives meaningful partitioning in molecular contributions

• Works great for bulk systems (liquid & ice) after fixing non-additive terms



# Learning the Dielectric Response of Water

- A demonstration of the SA-GPR framework, and the  $\lambda$ -SOAP kernel learning the dielectric response of water oligomers
- The kernels for multi-atomic systems can be built with an additive ansatz and that gives meaningful partitioning in molecular contributions
- Works great for bulk systems (liquid & ice) after fixing non-additive terms



Clausius-Mossotti:  $lpha=(arepsilon-1)(arepsilon+2)^{-1}V$ 

#### A Transferable Model of the Electron Density

• Write the density in atom-centered terms. Use a  $\phi_k \equiv R_n Y_m^l$  expansion.

$$\mathcal{F}(\rho) = \int d\mathbf{r} \left| \sum_{ik} c_{ik} \phi_k \left( \mathbf{r} - \mathbf{r}_i \right) \right|^2 + \eta \left| \mathbf{c} \right|^2, \qquad c_{inlm} = \sum_{jm'} x_{jnlm} k_{mm'}^l \left( \mathcal{X}_i, \mathcal{X}_j \right)$$

Machine-learn directly the full density (non-orthogonal basis is tricky!)
Highly transferable: learn on C4, predict on C8



Marzari, Vanderbilt, PRB 1997

# A Transferable Model of the Electron Density

• Write the density in atom-centered terms. Use a  $\phi_k \equiv R_n Y_m^l$  expansion.

$$\mathcal{F}(\rho) = \int d\mathbf{r} \left| \sum_{ik} c_{ik} \phi_k \left( \mathbf{r} - \mathbf{r}_i \right) \right|^2 + \eta \left| \mathbf{c} \right|^2, \qquad c_{inlm} = \sum_{jm'} x_{jnlm} k_{mm'}^l \left( \mathcal{X}_i, \mathcal{X}_j \right)$$

- Machine-learn directly the full density (non-orthogonal basis is tricky!)
- Highly transferable: learn on C4, predict on C8



Grisafi, Wilkins, Meyer, Fabrizio, Corminboeuf, MC, arxiv.org/abs/1809.05349

# A Transferable Model of the Electron Density

• Write the density in atom-centered terms. Use a  $\phi_k \equiv R_n Y_m^l$  expansion.

$$\mathcal{F}(\rho) = \int d\mathbf{r} \left| \sum_{ik} c_{ik} \phi_k \left( \mathbf{r} - \mathbf{r}_i \right) \right|^2 + \eta \left| \mathbf{c} \right|^2, \qquad c_{inlm} = \sum_{jm'} x_{jnlm} k_{mm'}^l \left( \mathcal{X}_i, \mathcal{X}_j \right)$$

- Machine-learn directly the full density (non-orthogonal basis is tricky!)
- Highly transferable: learn on C4, predict on C8



Grisafi, Wilkins, Meyer, Fabrizio, Corminboeuf, MC, arxiv.org/abs/1809.05349

# My Wishlist - Revisited

• General applicability: suitable for all systems and all types of properties

- "Nearsightedness" of electronic matter  $\leftrightarrow \textbf{local}$  environment decomposition
- Excellent perfomance on benchmark DBs, accurate & cheap **error estimate**
- Predict CCSD from PM7, potentials for solids, 99% prediction of drug activity, silicon & molecular crystals, NMR shieldings in solids
- Huge potential of a **SA-GPR framework to learn tensors** electric multipoles and response, but also densities, Hamiltonians, . . .
- Not only a fancy interpolator: use ML to gain insights and understanding
  - Structure-energy-property maps based on the kernel distance
  - Understand the nature of chemical interactions by dissecting the ML model



(Development) code available on http://cosmo-epfl.github.io & http://sketchmap.org/

#### A Map to Navigate Materials & Molecules

- Kernel-induced distances can be also used as the basis of clustering and dimensionality-reduction techniques
  - Generate insightful representations of the (free)-energy landscape of complex systems



http://sketchmap.org Machine-Learning Like a Physicist

#### A Map to Navigate Materials & Molecules

- Kernel-induced distances can be also used as the basis of clustering and dimensionality-reduction techniques
  - Generate insightful representations of the (free)-energy landscape of complex systems



Machine-Learning Like a Physicist

#### Measuring Distances Between Materials

- The crucial ingredient in machine-learning is a method to compare the items whose properties should be predicted
- A distance D(A, B) or a kernel function K(A, B) can be used to assess the (dis)-similarity between items in a set
- Under reasonable assumptions one can always convert a distance *D*(*A*, *B*) to a kernel, or to fingerprints and vice versa



#### Measuring Distances Between Materials

- The crucial ingredient in machine-learning is a method to compare the items whose properties should be predicted
- A distance D(A, B) or a kernel function K(A, B) can be used to assess the (dis)-similarity between items in a set
- Under reasonable assumptions one can always convert a distance D(A, B) to a kernel, or to fingerprints and vice versa



# How accurate can we get (and what we learn)?

- What happens if we increase the train set fraction?
  - Can we improve the accuracy by tuning the kernel?



#### QM9, MAE on atomization energies (eV)

#### How accurate can we get (and what we learn)?

- What happens if we increase the train set fraction?
  - Can we improve the accuracy by tuning the kernel?

|           |           | E / kcal mol <sup><math>-1</math></sup> |      |
|-----------|-----------|-----------------------------------------|------|
| Repr.     | Kernel    | RMSE                                    | MAE  |
| CM        | Laplacian | 5.48                                    | 3.54 |
| BoB       | Laplacian | 3.32                                    | 1.95 |
| BAML [17] | Laplacian | 2.54                                    | 1.15 |
| SOAP [35] | REMatch   | 1.61                                    | 0.92 |
| MBTR      | Linear    | 1.81                                    | 0.82 |
| MBTR      | Gaussian  | 0.94                                    | 0.60 |

#### QM7B, MAE on atomization energies (eV)

#### KRR/SOAP: 0.40 kcal/mol 75% TRAIN, Science Advances (2017)

75% TRAIN, arxiv:1704.06439
### How accurate can we get (and what we learn)?

- What happens if we increase the train set fraction?
  - Can we improve the accuracy by tuning the kernel?

### QM7B, MAE on atomization energies (eV)



# KRR/SOAP: 0.40 kcal/mol ALCHEMY: 0.33 kcal/mol

75% TRAIN, Science Advances (2017)

 $\kappa_{\alpha\beta} = e^{-\left(E_{\alpha}-E_{\beta}\right)^2/2\lambda^2}$ 

### How accurate can we get (and what we learn)?

- What happens if we increase the train set fraction?
  - Can we improve the accuracy by tuning the kernel?



#### QM7B, MAE on atomization energies (eV)

### KRR/SOAP: 0.40 kcal/mol MULTISCALE: 0.26 kcal/mol

75% TRAIN, Science Advances (2017)

$$K(A,B) = \sum_{i} w_{i}K_{i}(A,B)$$

### How accurate can we get (and what we learn)?

- What happens if we increase the train set fraction?
  - Can we improve the accuracy by tuning the kernel?



### QM9, MAE on atomization energies (eV)

### KRR/SOAP: 0.3 kcal/mol MULTISCALE: 0.18 kcal/mol

75% TRAIN, Science Advances (2017)

$$K(A,B) = \sum_{i} w_{i}K_{i}(A,B)$$

# A Simple (but Limited) Solution

• For rigid molecules, one can convert the tensor to a reference frame and learn individual components using an invariant kernel

$$k_{\mu\nu}(\mathcal{X},\mathcal{X}') \equiv R(\mathcal{X})_{\mu j} k(\mathcal{X},\mathcal{X}') R(\mathcal{X}')_{\nu j},$$
$$k(\mathcal{X},\mathcal{X}') = \tilde{k} (R(\mathcal{X}) \mathcal{X}, R(\mathcal{X}') \mathcal{X}')$$

Learning of second-harmonic response of water solutions (SHS experiments)



Bereau, Andrienko, von Lilienfeld, JCTC (2015); Liang, Tocci, Wilkins, Grisafi, Roke, & MC, PRB (2017);

# Understanding Errors in Quantum Calculations

- Learning differences between electronic structure methods is simpler
- Atom-centered energetics give insight into the impact of approximations



Ramakrishnan et al., JCTC (2015); M. Marianski et al., J. Chem. Theory Comput. 12, 6157 (2016); Bartok, De, Kermode, Bernstein, Csanyi, **MC**, Science Advances (2017)

### • One can write structural kernels as a combination of local kernels

• Entropy-regularized Wasserstein distance interpolates between "best-match" and "average" constructions

$$K(A,B) = \sum_{i \in A, j \in B} P_{ij}k(\mathcal{X}_i, \mathcal{X}_j)$$



- One can write structural kernels as a combination of local kernels
  - Entropy-regularized Wasserstein distance interpolates between "best-match" and "average" constructions

$$K(A,B) = \sum_{i \in A, j \in B} P_{ij}k(\mathcal{X}_i, \mathcal{X}_j)$$



De, Bartók, Csányi, MC, PCCP (2016); M. Cuturi, NIPS (2013); Machine-Learning Like a Physicist

- One can write structural kernels as a combination of local kernels
  - Entropy-regularized Wasserstein distance interpolates between "best-match" and "average" constructions

$$K(A,B) = \sum_{i \in A, j \in B} P_{ij}k(\mathcal{X}_i, \mathcal{X}_j)$$



De, Bartók, Csányi, MC, PCCP (2016); M. Cuturi, NIPS (2013); Machine-Learning Like a Physicist

- One can write structural kernels as a combination of local kernels
  - Entropy-regularized Wasserstein distance interpolates between "best-match" and "average" constructions

$$K(A,B) = \sum_{i \in A, j \in B} P_{ij}k(\mathcal{X}_i, \mathcal{X}_j)$$



$$\hat{K}^{\gamma}(A, B) \propto \max_{\mathbf{P} \in \mathcal{U}} \sum_{ij} P_{ji} (C_{ij}^{A, B} - \gamma \ln P_{ji})$$

De, Bartók, Csányi, MC, PCCP (2016); M. Cuturi, NIPS (2013); Machine-Learning Like a Physicist

### Additive Property Models & Beyond

• Crucial observation: learning with an average kernel is equivalent to learning an atom-centered *additive* energy model

$$\begin{array}{c} E\left(A\right) = \sum_{i} W_{i}K\left(A,A_{i}\right) \\ K\left(A,B\right) = \sum_{i \in A, j \in B} k\left(\mathcal{X}_{i},\mathcal{X}_{j}\right) \end{array} \iff \begin{array}{c} \epsilon\left(\mathcal{X}\right) = \sum_{i} W_{i}k\left(\mathcal{X},\mathcal{X}_{i}\right) \\ E\left(A\right) = \sum_{i \in A} \epsilon\left(\mathcal{X}_{i}\right) \end{array}$$

• Entropy-regularized match provides a natural way to go beyond additive models, retaining a local environment expansion



### Predicting the Full Polarizability of Molecules

- Benchmarking polarizability learning on the QM7b dataset. DFT and high-end coupled-cluster references (Rob DiStasio@Cornell)
- WIP (\*<2000 training structures, no optimization!) we can predict α with better accuracy than DFT.



- The convex hull construction determines phases that are stable for given thermodynamic boundary conditions (volume, composition, ...)
- We use a kernel principal component analysis to assign abstract descriptors to each phase and build a generalized convex hull.
  Probabilistic construction, with uncertainty quantification



Anelli, Engel, Pickard & MC arxiv.org/1803.01932

- The convex hull construction determines phases that are stable for given thermodynamic boundary conditions (volume, composition, ...)
- We use a kernel principal component analysis to assign abstract descriptors to each phase and build a generalized convex hull.
  Probabilistic construction, with uncertainty quantification



Anelli, Engel, Pickard & MC arxiv.org/1803.01932

- The convex hull construction determines phases that are stable for given thermodynamic boundary conditions (volume, composition, ...)
- We use a kernel principal component analysis to assign abstract descriptors to each phase and build a generalized convex hull.
  Probabilistic construction, with uncertainty quantification



Anelli, Engel, Pickard & MC arxiv.org/1803.01932



Engel, Anelli, MC, Pickard & Needs, Nature Comm. (2018)