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Bringing Fluctuations into Materials Modelling

e Quantum nuclei with path integral methods
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Li, Walker, Michaelides, PNAS (2011); MC et al., PNAS (2013); MC et al., Chem. Rev. (2016)
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http://dx.doi.org/10.1073/pnas.1308560110

Bringing Fluctuations into Materials Modelling

e Quantum nuclei with path integral methods

Markland & MC, Nat. Rev. Chem. (2018); http://ipi-code.org
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http://dx.doi.org/10.1038/s41570-017-0109

Bringing Fluctuations into Materials Modelling

e Quantum nuclei with path integral methods
e Anharmonic free energies in solids

Binding Energy (meV/mol) il il AA

Lattice Energy (PBE+D3) -1492 -1489 -3
Lattice Energy (PBEO+D3) -1271 -1271 0
Classical Harmonic -1500 -1487 -13
Quantum Anharmonic -1152 -1107 -45

Rossi, Gasparotto & MC, Phys. Rev. Lett. (2016)
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http://dx.doi.org/10.1103/PhysRevLett.117.115702

Bringing Fluctuations into Materials Modelling

3

e Quantum nuclei with path integral methods

e Anharmonic free energies in solids
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Cheng, Paxton, MC, Phys. Rev. Lett. (2018)
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http://dx.doi.org/10.1103/PhysRevLett.120.225901

Bringing Fluctuations into Materials Modelling

e Quantum nuclei with path integral methods
e Anharmonic free energies in solids

energy/mol. forcefield lecul ab initio
A .\. form | .\.mo ecule
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Rossi, Gasparotto & MC, Phys. Rev. Lett. (2016)
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http://dx.doi.org/10.1103/PhysRevLett.117.115702

Bringing Fluctuations into Materials Modelling

e Quantum nuclei with path integral methods
e Anharmonic free energies in solids
o Activated events and phase transitions

s BelEEmm - 1

Cheng & MC, J. Chem. Phys. (2017)
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http://dx.doi.org/10.1063/1.4973883

Why Machine Learning?

o Statistical sampling requires large size and long time simulations, but also
an accurate evaluation of electronic energy and properties

o Traditionally a tradeoff between cost, accuracy and transferability
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Why Machine Learning?

o Statistical sampling requires large size and long time simulations, but also
an accurate evaluation of electronic energy and properties

o Traditionally a tradeoff between cost, accuracy and transferability
e Use machine learning to get around these limitations

A ‘machine learning”
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My Machine Learning Wishlist

o General applicability: suitable For all systems and all types of properties
o Well-principled: incorporates structure and symmetries of physical laws
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My Machine Learning Wishlist

o General applicability: suitable for all systems and all types of properties
o Well-principled: incorporates structure and symmetries of physical laws
e Not only a fancy interpolator: use ML to gain insights and understanding

{gf e, Class

Class
sheet

E [kJ/mol]
10

,x e 5

"?% ‘).&

o TX 0252 42.4
Cluster Lattice Energy .

Xy ={x}  {x}=argmin [s(1X - X[) —s(]x - x|)I*
ij

MC, Tribello, Parrinello, PNAS (2011); Musil, [...], MC, Chem. Sci. (2018); http://interactive.sketchmap.org
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A transferable ML model For
materials and molecules



A Universal Surrogate Quantum Model

o Machine-learning can be regarded as a sophisticated interpolation
between a few known values of the properties
e Can it be made as accurate and general as the Schrodinger equation?
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A Universal Surrogate Quantum Model

o Machine-learning can be regarded as a sophisticated interpolation
between a few known values of the properties
e Can it be made as accurate and general as the Schrodinger equation?

E(A) = Z wiK (A}, A))
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A Universal Surrogate Quantum Model

o Machine-learning can be regarded as a sophisticated interpolation
between a few known values of the properties
e Can it be made as accurate and general as the Schrodinger equation?

test
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A Universal Surrogate Quantum Model

e Machine-learning can be regarded as a sophisticated interpolation
between a few known values of the properties

e Can it be made as accurate and general as the Schrodinger equation?

o Kernels are the main ingredient. Think of them as scalar products
between structures, K (A, B) ~ (A|B).
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Symmetry-Adapted Atom-Density Representations

o Structural representation based on a decorated atom-density vector |.A)

Willatt, Musil, MC, https://arxiv.org/pdf/1807.00408

8 Michele Ceriotti https://cosmo.epfl.ch Machine-Learning Like a Physicist



Symmetry-Adapted Atom-Density Representations

o Structural representation based on a decorated atom-density vector |.A)

g H W
> ‘|C>

(e[ A) = > g(r —14) o)

Willatt, Musil, MC, https://arxiv.org/pdf/1807.00408
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Symmetry-Adapted Atom-Density Representations

o Structural representation based on a decorated atom-density vector |.A)
o Physical symmetries are recovered by integration over group

de <r’T‘A> =

i Jdtg(r+t—r;) o) =3 Nolo)
Willatt, Musil, MC, https://arxiv.org/pdf/1807.00408
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Symmetry-Adapted Atom-Density Representations

o Structural representation based on a decorated atom-density vector |.A4)
e Physical symmetries are recovered by integration over group
e Use tensor products to reduce information loss

. I =
./.

r
» = » »

=

[T (x| T|A) (/| T |A) = [ dr’ ('] A) (' +r|A)

Willatt, Musil, MC, https://arxiv.org/pdf/1807.00408
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Symmetry-Adapted Atom-Density Representations

o Structural representation based on a decorated atom-density vector |.A)
o Physical symmetries are recovered by integration over group

e Use tensor products to reduce information loss

° |A(")>? leads naturally to atom-centered decomposition

<P|A(2)>T B Zij |aiag) g(r — I'w>
TR \&

Willatt, Musil, MC, https://arxiv.org/pdf/1807.00408
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Symmetry-Adapted Atom-Density Representations

o Structural representation based on a decorated atom-density vector |.A4)
e Physical symmetries are recovered by integration over group

e Use tensor products to reduce information loss

° |A(”)>? leads naturally to atom-centered decomposition

o Rotational average yields (v + 1)-body correlation functions | X)),
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Symmetry Adapted Representations & SOAP Kernel

o Most of the existing density-based representations and kernels emerge
as special cases of this framework

r)= Zig(r —rij)

(X, X) = (X[X') ~ [4(r)
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Symmetry Adapted Representations & SOAP Kernel

o Most of the existing density-based representations and kernels emerge
as special cases of this framework

o Not necessary to use position basis. Radial functions and spherical
harmonics — SOAP power spectrum and kernel

(1) = (r) = 3, 9(x — r4y)

I I
(nim|X;) = [ dx1p(r) R ()Y, ()
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Symmetry Adapted Representations & SOAP Kernel

o Most of the existing density-based representations and kernels emerge
as special cases of this framework

o Not necessary to use position basis. Radial functions and spherical
harmonics — SOAP power spectrum and kernel

J A [ [ () (fer)a|
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Symmetry Adapted Representations & SOAP Kernel

o Most of the existing density-based representations and kernels emerge
as special cases of this framework

o Not necessary to use position basis. Radial functions and spherical
harmonics — SOAP power spectrum and kernel
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Symmetry Adapted Representations & SOAP Kernel

o Most of the existing density-based representations and kernels emerge
as special cases of this framework

o Not necessary to use position basis. Radial functions and spherical
harmonics — SOAP power spectrum and kernel
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Symmetry Adapted Representations & SOAP Kernel

o Most of the existing density-based representations and kernels emerge
as special cases of this framework

o Not necessary to use position basis. Radial functions and spherical
harmonics — SOAP power spectrum and kernel

<nn’l|X(2)>R =, (nim|X) (n'lm|X)

Bartok, Kondor, Csanyi, PRB (2013)
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Symmetry Adapted Representations & SOAP Kernel

e Most of the existing density-based representations and kernels emerge
as special cases of this framework

o Not necessary to use position basis. Radial functions and spherical
harmonics — SOAP power spectrum and kernel

o Other strategies to combine local kernels (entropy-regularized match)

K(A,B)=3 Pijk(X;, Xj)

i€cA,jeB

De, Bartok, Csanyi, MC, PCCP (2016); M. Cuturi, NIPS (2013);
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Symmetry Adapted Representations & SOAP Kernel

e Most of the existing density-based representations and kernels emerge
as special cases of this framework

o Not necessary to use position basis. Radial functions and spherical
harmonics — SOAP power spectrum and kernel

o Other strategies to combine local kernels (entropy-regularized match)

K(A,B)=3 Pijk(X;, Xj)

i€cA,jeB

K7(A, B) x
A,B
maxpey Y5 Pji(Ciy ™ — v1n Py)
De, Bartok, Csanyi, MC, PCCP (2016); M. Cuturi, NIPS (2013);
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How well does this work?



100k Molecules with Coupled-Clusters

o CCSD(T) Energetics on the QM9 - 114k useful predictions based on 20k
training calculations

Ramakrishnan et al., Scientific Data (2014); Ramakrishnan et al., JCTC (2015)
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100k Molecules with Coupled-Clusters

o CCSD(T) Energetics on the QM9 - 114k useful predictions based on 20k

training calculations
o 1kcal/mol error for predicting CCSD(T) based on PM7 geometries;

0.18kcal/mol error for predicting CCSD(T) based on DFT geometries!
+CCpm7  -0-AByycc  *CCorr  ~-Aprrcc

20 7 7 T T '
S+ i

%
DFT geometry

MAE [kcal/mol]

1 1 1 | R | 1 1 1 | R |
200 500 1000 2000 5000 10* 2-10*
n. train
De, Bartok, Csanyi, MC, PCCP (2016);
Bartok, De, Kermode, Bernstein, Csanyi, MC, Science Advances (2017)
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Silicon Surfaces - Complexity in a Simple Material

o More than just molecules: a SOAP-GAP model for Si can capture the dimer
tilt in Si(100)-2x1, and the delicate energy balance that determines the
stability of the Si(111) 7x7 DAS reconstruction
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Bartok, De, Kermode, Bernstein, Csanyi, MC, Science Advances (2017)
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http://dx.doi.org/10.1126/sciadv.1701816

Accurate Predictions for Molecular Crystals

e Substituted pentacenes - model systems for molecular electronics
e Easily achieve sub-kcal/mol accuracy, with REMatch-SOAP kernels
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Musil, De, Yang, Campbell, Day, MC, Chemical Science (2018)
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http://dx.doi.org/10.1039/C7SC04665K

Recognizing Active Ligands for Receptor Proteins

o A SOAP-REMatch-based KSVM classifies active and inactive ligands with
99% accuracy; non-additive model is crucial!

e Sensitivity analysis help identify the active “warhead” and could guide
drug design and optimization
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Bartok, De, Kermode, Bernstein, Csanyi, MC, Science Advances (2017)

14 Michele Ceriotti https://cosmo.epfl.ch Machine-Learning Like a Physicist


http://dx.doi.org/10.1126/sciadv.1701816

Thorough Sampling of Compound Space

e The train set should cover uniformly the relevant space
o Farthest point sampling is a simple, constructive strategy to optimize the
training set, opening doors to active learning
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Bartok, De, Kermode, Bernstein, Csanyi, MC, Science Advances (2017)

MC, Tribello, Parrinello, PNAS (2011); http://sketchmap.org
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Thorough Sampling of Compound Space

e The train set should cover uniformly the relevant space
o Farthest point sampling is a simple, constructive strategy to optimize the
training set, opening doors to active learning
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Bartok, De, Kermode, Bernstein, Csanyi, MC, Science Advances (2017)

MC, Tribello, Parrinello, PNAS (2011); http://sketchmap.org
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An Accurate & Inexpensive Error Estimation

o Generate an ensemble of GPR models, and use distribution of predictions

y(x) = NLRSZy(") (X), o (X)= NRS1_1 > (v (X)—y(?f))2

o Verify accuracy by the distribution of errors P (|y (X) — Yrer (X)||o (X))
o Use maximum-likelihood to calibrate the uncertainty o (X) — ao (X)"™"

107" 4

1073 4

AE (eV/atom)

1075 4

1073 1072

Uncertainty (eV/atom)
Musil, Willatt, MC arxiv.org/abs/1809.07653

Machine-Learning Like a Physicist
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More than Interatomic Potentials

o Solid-state NMR relies on GIPAW-DFT to determine crystal structure of
molecular materials

e Train a ML model on 2000 CSD structures, predict chemical shieldings
with DFT accuracy (RMSE H: 0.5, C: 5, N: 13, 0: 18 ppm)
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"H 8gpaw / PPM 3C By paw / PPM

w/Emsley, Paruzzo, Hofstetter, http://shiftml.org
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More than Interatomic Potentials

e Solid-state NMR relies on GIPAW-DFT to determine crystal structure of
molecular materials

e Train a ML model on 2000 CSD structures, predict chemical shieldings
with DFT accuracy (RMSE H: 0.5, C: 5, N: 13, 0: 18 ppm)

e Accurate enough to do structure determination!
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w/Emsley, Paruzzo, Hofstetter, http://shiftml.org
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More than Interatomic Potentials

o Solid-state NMR relies on GIPAW-DFT to determine crystal structure of
molecular materials

e Train a ML model on 2000 CSD structures, predict chemical shieldings
with DFT accuracy (RMSE H: 0.5, C: 5, N: 13, 0: 18 ppm)

e Accurate enough to do structure determination!
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w/Emsley, Paruzzo, Hofstetter, http://shiftml.org
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Insights from Machine Learning



Understanding the Range of Interactions

o Environment kernels can be built for different cutoff radii
o Dimensionality/accuracy tradeoff, a measure of the range of interactions

19
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Michele Ceriotti https://cosmo.epfl.ch
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Bartok, De, Kermode, Bernstein, Csanyi, MC, Science Advances (2017)
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Understanding the Range of Interactions

o Environment kernels can be built for different cutoff radii

o Dimensionality/accuracy tradeoff, a measure of the range of interactions

o Amulti-scale kernel K (A, B) = Y_; w;K; (A, B) yields the best of all worlds -
chemical accuracy on QM9 with ~ 5000 train structures
rc[A] —MS — 2.0 — 3.0 — 4.0

MAE [kcal/mol]

0.2f

il 1

| IR I T R SR | 1 IR S R
500 1000 2000 5000 10* 2-10* 5-10°

n. train

Bartok, De, Kermode, Bernstein, Csanyi, MC, Science Advances (2017)
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http://dx.doi.org/10.1126/sciadv.1701816

A Data-Driven Periodic Table of the Elements

o How to learn with multiple species? Decorate atomic Gaussian with
elemental kets |H), |O), . . .

20 Michele Ceriotti https://cosmo.epfl.ch Machine-Learning Like a Physicist



A Data-Driven Periodic Table of the Elements

o How to learn with multiple species? Decorate atomic Gaussian with
elemental kets |H), |O), . . .
e Expand each ket in a finite basis, |a) = >, u,,|J). Optimize coefficients

H) = 0.5]M) +0.1](}) + 0.2 |®)
IC) =0.2|A) +0.8](}) +0.3|®)
|0) =0.1]/4) +0.1|(}) + 0.6 |@)
. .
F 5 ¥
o A ®

4

Empedocles et al. (ca 360BC). Metaphor courtesy of Albert Bartok
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A Data-Driven Periodic Table of the Elements

o How to learn with multiple species? Decorate atomic Gaussian with
elemental kets |H), |O), . . .

e Expand each ket in a finite basis, |a) = >~ , u,,|J). Optimize coefficients

e Dramatic reduction of the descriptor space, more effective learning. ..

—e— Reference -#-- d;=2 —e— Standard SOAP
1.0 —— d;=1 —— dj=4—% Multi-kernel

0.3

Test MAE (eV / atom)

250 500 1k 3k 6k
Number of training structures

Elpasolite dataset. Reference curve (red) from Faber et al. JCP (2018)
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A Data-Driven Periodic Table of the Elements

o How to learn with multiple species? Decorate atomic Gaussian with
elemental kets |H), |O), . . .

e Expand each ket in a finite basis, |a) = >, u,,|J). Optimize coefficients

e Dramatic reduction of the descriptor space, more effective learning. ..

e ... and as by-product get a data-driven version of the periodic table!

B C N O F Ne
Al Si P S Cl Ar

Ga Ge As Se Br Kr
In Sn Sb Te 1 Xe
Tl Pb Bi

Willatt, Musil, MC, https://arxiv.org/abs/1807.00236
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Tensorial properties and beyond



Machine-Learning for Tensors

o In a Gaussian Process framework, the kernel represents correlations
between properties. This must be reflected in how it transforms under
symmetry operations applied to the inputs

k(X,X) < (y(X):y (X)), sok (fsx, fs’x/) o <y (32() Ly (sx)>

o Properties that are invariant under S must be learned with a kernel that
should be insensitive to the operation

k (32(,3/)(’) = k(X,X)

e How about machine-learning tensorial properties T? The kernel should be
covariant to rigid rotations - need a symmetry-adapted framework

ko (X, X) & (T, (X): T, (X)) = Ky, (ivc, k’x’) = Rk (X, X)R,,,
R0

%

Glielmo, Sollich, & De Vita, PRB (2017); Grisafi, Wilkins, Csanyi, & MC, PRL (2018)
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http://dx.doi.org/10.1103/PhysRevLett.120.036002

A—SOAP: A SO (3) Compliant Kernel

o Recall the definition of SOAP, based on the atom-density overlap

o o

Z gr—rz]

N (&
* *

-~
k(X X;) (x®

X,(V>>R ~ [dR |f w(r)w’(ér)dr‘y

2

k(X,X) = /dm (X, kx/), K (X, X)) = ‘/sz (x) v (x)dx

Grisafi, Wilkins, Csanyi, & MC, PRL (2018)
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A—SOAP: A SO (3) Compliant Kernel

o Recall the definition of SOAP, based on the atom-density overlap
e Each tensor can be decomposed into irreducible spherical components
T*, corresponding to the representations of SO(3)

( A~
o ®
. ~
o TR o
n

image fro Wikipedia
> (R(x)) = D), (R) T (%)

Grisafi, Wilkins, Csanyi, & MC, PRL (2018)
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A—SOAP: A SO (3) Compliant Kernel

o Recall the definition of SOAP, based on the atom-density overlap

e Each tensor can be decomposed into irreducible spherical components
T*, corresponding to the representations of SO(3)

o A hierarchy of A\-SOAP kernels can be defined to learn tensorial quantities

(X, X /dR (XRX)

Grisafi, Wilkins, Csanyi, & MC, PRL (2018)
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Learning the Dielectric Response of Water

o A demonstration of the SA-GPR framework, and the \-SOAP kernel -
learning the dielectric response of water oligomers

e The kernels for multi-atomic systems can be built with an additive ansatz -
and that gives meaningful partitioning in molecular contributions

a) H,0 b) (H,0), ) Hs03
:<—x <> 10 k. X
10 =5 10 <o x\x\x i O TTH
— <o Feo ’\o\. F<+ 0
3 L+ i 1t -
- F<o ~+ Feo
o 100 ' ;“’% Ew% e
%) E [ 1] 1
103} : O’_O % 10_2: o\o\o B
-2[ 3
104 i i 10 ’_-n...l vl e Foovrl v vt i
10 102 10 10° 10 102
training points training points training points

A, (&7, XB
w (4, B) = NANBZ

Grisafi, Wilkins, Csanyi, & MC, PRL (2018)
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Learning the Dielectric Response of Water

o A demonstration of the SA-GPR framework, and the \-SOAP kernel -
learning the dielectric response of water oligomers

e The kernels for multi-atomic systems can be built with an additive ansatz -
and that gives meaningful partitioning in molecular contributions

o Works great for bulk systems (liquid & ice) after fixing non-additive terms
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1072 E
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+ °
| | |
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training points

Clausius-Mossotti: a = (¢ — 1)(e +2) 7'V

Grisafi, Wilkins, Csanyi, & MC, PRL (2018)
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A Transferable Model of the Electron Density

o Write the density in atom-centered terms. Use a ¢, = R, Y/, expansion.
2
+ "7 |c|2 I Cin[m = Z X_/n[mk,[-nm/ (X,’ X))

jm’

f@:/m

> b (r—r))
ik

e Machine-learn directly the full density (non-orthogonal basis is tricky!)

Marzari, Vanderbilt, PRB 1997
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A Transferable Model of the Electron Density

o Write the density in atom-centered terms. Use a ¢, = R, Y/, expansion.
2
+ "7 |c|2 I Cin[m = Z X_[n[mk,[nm/ (XH .X))
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f@:/m

> b (r—r))
ik

e Machine-learn directly the full density (non-orthogonal basis is tricky!)
o Highly transferable: learn on C4, predict on C8

ML - QM

T = 1.41%
(e,) = 1.40%

Grisafi, Wilkins, Meyer, Fabrizio, Corminboeuf, MC, arxiv.org/abs/1809.05349
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A Transferable Model of the Electron Density

o Write the density in atom-centered terms. Use a ¢, = R, Y/, expansion.
2
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e Machine-learn directly the full density (non-orthogonal basis is tricky!)
o Highly transferable: learn on C4, predict on C8

ML ML — QM

\

€= 1.81%
<€p> =1.83%

Grisafi, Wilkins, Meyer, Fabrizio, Corminboeuf, MC, arxiv.org/abs/1809.05349
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My Wishlist - Revisited

o General applicability: suitable for all systems and all types of properties
o “Nearsightedness” of electronic matter <+ local environment decomposition
o Excellent perfomance on benchmark DBs, accurate & cheap error estimate
o Predict CCSD from PM7, potentials for solids, 99% prediction of drug activity,
silicon & molecular crystals, NMR shieldings in solids
o Huge potential of a SA-GPR framework to learn tensors - electric
multipoles and response, but also densities, Hamiltonians, . . .

o Notonly a fancy interpolator: use ML to gain insights and understanding

o Structure-energy-property maps based on the kernel distance
o Understand the nature of chemical interactions by dissecting the ML model

(Development) code available on http://cosmo-epfl.github.io & http://sketchmap.org/
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A Map to Navigate Materials & Molecules

e Kernel-induced distances can be also used as the basis of clustering and
dimensionality-reduction techniques

o Generate insightful representations of the (free)-energy landscape of
complex systems

XiGRD

Pu P4
_>
High-dimensional descriptors Non-linear dimensionality Intuitive maps of
of a complex system reduction (sketch-map) structural stability

MC, Tribello, Parrinello, PNAS (2011).

http://sketchmap.org
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A Map to Navigate Materials & Molecules

e Kernel-induced distances can be also used as the basis of clustering and
dimensionality-reduction techniques
o Generate insightful representations of the (free)-energy landscape of
complex systems

Liquid

Low density*
Polymorphs _

MC, Tribello, Parrinello, PNAS (2011).
http://sketchmap.org

Machine-Learning Like a Physicist
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Measuring Distances Between Materials

e The crucial ingredient in machine-learning is a method to compare the

items whose properties should be predicted
o Adistance D (A, B) or a kernel function K(A, B) can be used to assess the

(dis)-similarity between items in a set

=
LD

K(X, X'
D(X, X'

28 Michele Ceriotti https://cosmo.epfl.ch

(X,X") ~ 0
0 DWX,X)>0
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Measuring Distances Between Materials

e The crucial ingredient in machine-learning is a method to compare the
items whose properties should be predicted

o Adistance D (A, B) or a kernel function K(A, B) can be used to assess the
(dis)-similarity between items in a set

o Under reasonable assumptions one can always convert a distance D (A, B)
to a kernel, or to fingerprints and vice versa

D(A;, Aj)
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How accurate can we get (and what we learn)?

o What happens if we increase the train set fraction?
o Can we improve the accuracy by tuning the kernel?

QM9, MAE on atomization energies (eV)

CM 0.128 7
BOB 0.0667 £
BAML | 0.0519 5

KRR |ECFP4 | 4.25 =03t
HDAD 0.0251 02000 5000 10° 510° 105
HD 0.0644
MARAD| 0.0529 KRR/SOAP: 0.012 eV

A (1kJ/mol)
90% TRAIN, arxiv:1702.0553 75% TRAIN, Science Advances (2017)

Bartok, De, Kermode, Bernstein, Csanyi, MC, Science Advances (2017)
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How accurate can we get (and what we learn)?

o What happens if we increase the train set fraction?
o Can we improve the accuracy by tuning the kernel?

QM7B, MAE on atomization energies (eV)

E / kcal mol ™!

Repr. Kernel RMSE MAE
CM Laplacian 5.48 3.54
BoB Laplacian 3.32 1.95
BAML [17] Laplacian 2.54 1.15 KRR/SOAP: 0'40 kca l/m°l
-SOAP {35 REMateh—1-61—0-92— 75% TRAIN, Science Advances (2017)
MBTR Linear 1.81 0.82

MBTR Gaussian 0.94 0.60

75% TRAIN, arxiv:1704.06439

Bartok, De, Kermode, Bernstein, Csanyi, MC, Science Advances (2017)
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How accurate can we get (and what we learn)?

o What happens if we increase the train set fraction?
o Can we improve the accuracy by tuning the kernel?

QM7B, MAE on atomization energies (eV)

(alB) = Kap
<>
» .
Xoo»
F KRR/SOAP: 0.40 kcal/mol
<>

ALCHEMY: 0.33 kcal/mol
f d}% ’Za,@ Fap f Pa (X)plﬂ(RX) ‘ 75% TRAIN, Science Advances (2017)

(Ea—Ep)? /222

Kap = e

Bartok, De, Kermode, Bernstein, Csanyi, MC, Science Advances (2017)
29 Michele Ceriotti https://cosmo.epfl.ch Machine-Learning Like a Physicist


http://dx.doi.org/10.1126/sciadv.1701816

How accurate can we get (and what we learn)?

o What happens if we increase the train set fraction?
o Can we improve the accuracy by tuning the kernel?

QM7B, MAE on atomization energies (eV)
rc[A] — MS — 2.0 — 3.0 — 4.0

N

KRR/SOAP: 0.40 kcal/mol

MULTISCALE: 0.26 kcal/mol
75% TRAIN, Science Advances (2017)

MAE [kcal/mol]

4
5]

0.2k I P R I P
10? 200 500 1000 2000 5000
n. train

K(A,B) =Y wikKi(A,B)

Bartok, De, Kermode, Bernstein, Csanyi, MC, Science Advances (2017)
29 Michele Ceriotti https://cosmo.epfl.ch Machine-Learning Like a Physicist


http://dx.doi.org/10.1126/sciadv.1701816

How accurate can we get (and what we learn)?

o What happens if we increase the train set fraction?
o Can we improve the accuracy by tuning the kernel?

QM9, MAE on atomization energies (eV)
rc[A] — MS — 2.0 — 3.0 — 4.0

5¢
g 1 KRR/SOAP: 0.3 kcal/mol
W05 MULTISCALE: 0.18 kcal/mol
= | 75% TRAIN, Science Advances (2017)
0.2
566 'iloloo 2o|00' .50.0.0..1.(.)4 2~1|o4' éﬁo'“”

n. train

K(A,B) =Y wikKi(A,B)

Bartok, De, Kermode, Bernstein, Csanyi, MC, Science Advances (2017)
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A Simple (but Limited) Solution

e For rigid molecules, one can convert the tensor to a reference frame and
learn individual components using an invariant kernel

K (X, X') = R(X), k (X, X')R(X")

k(X,x') =k(R(X)X,R(X)X)

o Learning of second-harmonic response of water solutions (SHS
experiments)

vj

ps
:K’ﬁa 1 T T T T .
i = jof §
) c
(JO S
v
v st |
X« |E
]
0 g
S < Bzxx
% g
=
Eo) . g st Bzvv g
= Q B 4
“4;. 2 of 722z
y .
z
g ¥ . . . . . .
A5 0 5 0 S 10 s

Quantum chemistry (atomic unit)

Bereau, Andrienko, von Lilienfeld, JCTC (2015); Liang, Tocci, Wilkins, Grisafi, Roke, & MC, PRB (2017);
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Understanding Errors in Quantum Calculations

o Learning differences between electronic structure methods is simpler
e Atom-centered energetics give insight into the impact of approximations

AE )
[kcal/mol] “
Y
0.75] f
0501 ps@
" PBE - PM7 e
0.25+

/
-0.25- q 8‘/{ v ’(/
'0.50" ,‘ ‘ /\/
075 PBEO-PBE

Ramakrishnan et al., JCTC (2015); M. Marianski et al., J. Chem. Theory Comput. 12, 6157 (2016);
Bartok, De, Kermode, Bernstein, Csanyi, MC, Science Advances (2017)
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Structures as Combinations of Local Environments

e One can write structuralkernels as a combination of local kernels

K(A,B) =3 ica jep Pijk(X, &)

De, Barték, Csanyi, MC, PCCP (2016); M. Cuturi, NIPS (2013);
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Structures as Combinations of Local Environments

e One can write structuralkernels as a combination of local kernels

o Entropy-regularized Wasserstein distance interpolates between
“best-match” and “average” constructions

K(A,B) =3 ica jen Dijh(X, X))

De, Bartok, Csanyi, MC, PCCP (2016); M. Cuturi, NIPS (2013);
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e One can write structuralkernels as a combination of local kernels

o Entropy-regularized Wasserstein distance interpolates between
“best-match” and “average” constructions

K(A,B) =3 ica jen Dijh(X, X))

K(A, B) x
maxpecy Zij PjiC;?’B

De, Bartok, Csanyi, MC, PCCP (2016); M. Cuturi, NIPS (2013);
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Structures as Combinations of Local Environments

e One can write structuralkernels as a combination of local kernels

o Entropy-regularized Wasserstein distance interpolates between
“best-match” and “average” constructions

K(A,B) =3 ica jen Dijh(X, X))

K7(A, B) x
maxpey ) _;; Pji(C’fj‘.’B ~vIn Pj;)

De, Bartok, Csanyi, MC, PCCP (2016); M. Cuturi, NIPS (2013);
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Additive Property Models & Beyond

e Crucial observation: learning with an average kernel is equivalent to
learning an atom-centered additive energy model
E(A) =T, WK(AA) (X)) =Y, wik(X, &)
K (A B) =Y icajes k (Xi X)) E(A) =2 jcac (X))
o Entropy-regularized match provides a natural way to go beyond additive
models, retaining a local environment expansion

K(A,B) = Zz] k(XiA, X]‘B)
E(A) = Zif(Xz’A)
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Predicting the Full Polarizability of Molecules

e Benchmarking polarizability learning on the QM7b dataset. DFT and
high-end coupled-cluster references (Rob DiStasio@Cornell)

e WIP (*<2000 training structures, no optimization!) - we can predict a with
better accuracy than DFT.
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polarizability (CCSD) polarizability (CCSD)
(),0(:)[a.u.] Olxx Qyy Qzz Qiyy Olxz Qyz

DFT vs CCSD 26,26 20,21 0909 06,13 00,06 0.1,0.6
SA-GPR*vs CCSD 0.0,1.5 0.0,14 0.0,09 0.0,1.0 0.0,0.7 0.0,0.6
ASA-GPR* 0.0,0.7 0.0,0.6 0.0,0.3 0.0,04 0.0,0.3 0.0,0.2

34 Michele Ceriotti https://cosmo.epfl.ch Machine-Learning Like a Physicist



A Generalized Convex Hull Construction

e The convex hull construction determines phases that are stable for given
thermodynamic boundary conditions (volume, composition, ...)

T

rxo=fra+ (11— flzp

Anelli, Engel, Pickard & MC arxiv.org/1803.01932
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A Generalized Convex Hull Construction

e The convex hull construction determines phases that are stable for given
thermodynamic boundary conditions (volume, composition, ...)

e We use a kernel principal component analysis to assign abstract
descriptors to each phase and build a generalized convex hull.
Probabilistic construction, with uncertainty quantification

EccH(d1,92)

P2

Anelli, Engel, Pickard & MC arxiv.org/1803.01932
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A Generalized Convex Hull Construction

e The convex hull construction determines phases that are stable for given
thermodynamic boundary conditions (volume, composition, ...)

e We use a kernel principal component analysis to assign abstract
descriptors to each phase and build a generalized convex hull.
Probabilistic construction, with uncertainty quantification
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Anelli, Engel, Pickard & MC arxiv.org/1803.01932
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A Generalized Convex Hull Construction

|______
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