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Molecular databases
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Machine learning
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First step :
Predicting interatomic distances



[Schütt et al.] Quantum-Chemical Insights from Deep Tensor 
Neural Networks. Nature Communications 2017.

Related works

● GDB-9 dataset : 
○ combinatorial molecular space with 9 

heavy atoms: C, N, O and F.
○ ~134k small theoretical molecules

● full distances matrix (D): scaling issue
● “only” energy prediction
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Preliminary results
● PubChemQC dataset

○ > 3 millions of real molecules
○ general sampling of the real molecular space (organic chemistry)

● homogeneous data (DFT, B3LYP, 6-31G*)
● simple neural networks (from 3 up to 9 fully connected layers)
● designed for strong scaling
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Model Objective Given data

1 All interatomic distances (partial) distance matrix

2 1 distance (CC, CH, OH) all distances with other atoms

3 1 distance (CC, CH, OH) distances with neighbors



Partial distances matrix with trilateration
Distances better than coordinates: invariant by rotation and translation
But full distances matrix for n atoms →n2 distances bad scaling

How to reconstruct converged geometry? 3D trilateration
Solution : distances from fixed points →4n distances good scaling
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+ Atomic masses [ma0, … , man]



Many tested models !
Neural networks with fully connected layers:

● Loss function: RMSE
● Learning rate: {0.1, 0.0001, 0.00001}
● Adam Optimizer ε: {1000, 0.0001}
● Weights initialization : {0.2, 0.002}
● Hidden layers activation function: {elu, crelu}
● Exit layer activation function: linear
● Weight decay: {0.1, 0.01, 0.001}
● Layers width: 500 (up to 100 atoms per molecule)
● Networks depth: {3, 7}
● Batch size : {500, 200}
● Number of epochs : 3

→Networks trained to predicted Δd from starting distances to converged distances
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Results
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One interatomic distance (CC, OH and CH)
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Results for Carbon-Carbon
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Example of folded molecule (Pubchem CID 328310)
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Unusually close atoms = “false” bonding.

Bad surrounding predicted distances.

Neural network needs
feature engineering
domain specific knowledge 

Limitation to the covalent neighboring region! (200 pm)
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Results for Carbon-Carbon
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Median error < 0.3 pm

20 problematic CC bonds on non curated data!



Conclusion and perspectives

●  Median error for CC < 0.3 pm; for CH < 0.2 pm and for OH < 0.1 pm

○ > 3 millions of real molecules (previously non curated)

○ general sampling of the real molecular space (organic chemistry)

● Post-doc position available (now) on:

○ iterative geometry optimization coupling different models (NN, KRR,...)

○ prediction of the wavefunction or UV-visible absorption/emission

○ generative models (GAN, autoencoders) or combinatorial optimization 

algorithms (objective and neighboring function) to efficiently explore the 

molecular space 
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