Generalized Stochastic Simulation Algorithm for Artificial Chemistry Gillespie in artificial chemistry

Hedi Soula

Sorbonne University

September 25 2018

Bacterial reaction graphs

(a) Step 1: From cDNA fasta file, get gene labels.

(b) Step 2: From KEGG gene entries, get EC(c) Step 3: From KEGG enzyme entries, get codes.

(d) Step 4: Build graph and filter ubiquitous metabolites. Ubiquitous metabolites: H2O, ATP, ADP, NAD+, NADH, NADPH, NADP+, CO2, ammonia, sulfate, thioredoxin, phosphate, PPi, H+.

Artificial Chemistry

Motivation

- (Real) Chemistry is ... difficult
 - Maybe artificial chemistry is easier
 - can model interesting properties (for e.g. space/diffusion)
- (Real) Life is ... chemistry
 - Artificial Life should have ... artificial chemistry (AC)

What is done (usually)

- chemistry is prescribed : small dimension (small # of reactions)
- straightforward : chemistry graph is simple
- (somewhat) unrealistic
 - transition energies are ignored (easier)
 - mass conservation is sloppy
 - $A + B \mapsto C$ and $C \mapsto A$

AC: what is expected

- Iarge : should have a huge number of reactions
- energy : all reactions are not possible
- mass: reversibility should not be hacked
- open : we don't know all reactions/molecules

Hutton Artificial Chemistry (1)

Hutton J.

- several papers on his AC scheme
- only one follow up
- straightforward : chemistry is simple
- very complex : chemistry reactions network can be extremely complex
- however (somewhat) unrealistic
- Hutton, Tim J. Evolvable self-replicating molecules in an artificial chemistry. Artificial life 8.4 (2002): 341-356.
- Hutton, Tim J. Evolvable self-reproducing cells in a two-dimensional artificial chemistry. Artificial life 13.1 (2007): 11-30.
- Hutton, Tim J. A functional self-reproducing cell in a two-dimensional artificial chemistry. ALIFE9, 2004.
- Hutton, Tim J. The organic builder: A public experiment in artificial chemistries and self-replication. Artificial life 15.1 (2009): 21-28.

Hutton Artificial Chemistry (2)

Main properties

- molecules are graphs
- nodes are domains
- edges are chemical bonding
- domains have a fixed type and a changing state
 - described by a pair (t|s)
 - usually a letter and a number a0,
 b1 ...
- any domain can have any numbers of links
- the chemistry is composed of fully connected subgraphs

Hutton Artificial Chemistry (3)

Geometry and Physics

- ► HAC is 2D
- spatially resolved
- each domain has an id/position
- links are springs (however weird coding)
- (vaguely) Brownian in viscous medium

Hutton Artificial Chemistry (3)

Reactions

Reactions are of the form:

$$(t_1|s_1)(.|+)(t_2|s_2) \mapsto (t_1|s_3)(.|+)(t_2|s_4)$$

- $ightharpoonup (t_i|s_i)$ is a domain (within a molecule)
- ightharpoonup (.|+) : is either linked . or no (collision) +
- note that type is unchanged
- modification are only local (other links unmodified)
- conformation . is performed instantaneously
- reaction + is performed instantaneously upon collision
- when conflict : chose at random

Hutton Artificial Chemistry (4)

Examples

Starting a reactor with several a0s and 1 (one) a1 with

$$a0 + a1 \mapsto a1.a2 \text{ yields}$$

$$a1 \longrightarrow a2 \longrightarrow a2 \longrightarrow a2 \longrightarrow a2 \longrightarrow a2$$

whereas $a0 + a1 \mapsto a2.a1$ yields

Hedi Soula

Staarc

Hutton Artificial Chemistry (5): replication

Main properties

Using wildcards ...

R9: $e8 + e0 \rightarrow e4e3$

R10: $x4y1 \rightarrow x2y5$

R11: $x5 + x0 \rightarrow x7x6$

R12: $x3 + y6 \rightarrow x2y3$

R13: $x7y3 \rightarrow x4y3$ R14: $f4f3 \rightarrow f8 + f8$

R15: $x2y8 \rightarrow x9y1$

R16: $x9y9 \rightarrow x8 + y8$

Hutton Artificial Chemistry (6)

Pros and Cons

- ▶ Pros :
 - very general
 - 2D and nice
 - mass conservation
- ► Cons:
 - 2D and nice
 - absurdly long
 - no reaction rates
 - intelligently designed

STAARC : STochastic Atom-based ARtificial Chemistry

- Getting rid of space
- Same data structure (without space)
- reactions with rates
- SSA formalism (Gillespie)
- slightly involved (but not too much)
- github.com/hsoula/staarc

Gillespie in AC

Modifications

▶ Reaction have a rate :

$$(t_1|s_1)(.|+)(t_2|s_2) \mapsto (t_1|s_3)(.|+)(t_2|s_4) : \lambda$$

- ► For each + reaction :
 - We count the number of $n_1 = (t_1|s_1)$ and $n_2 = (t_2|s_2)$
 - minus the number of $n_{12} = (t_1|s_1).(t_2|s_2)$ already linked
 - the propensity is $a = \lambda (n_1 * n_2 n_{12})$
- For each . reaction :
 - we count the number of $n_{12} = (t_1|s_1).(t_2|s_2)$ already linked
 - the propensity is $a = \lambda n_{12}$
- then classical Gillespie algorithm
- once a reaction is selected we apply the modification to a given pair (selected at random uniformly)

Gillespie

First step

compute all propensities a_i Compute the combined rates of all reactions

$$a_0 = \sum_{i=1}^R a_i$$

To compute the time of the next reaction, draw a random number

$$\tau = -\log(rn)/a_0$$

This answers the when

Gillespie

What reaction

To compute the what, we choose randomly the equation weighted by their relative weight i.e

$$Pr(\text{next reaction is} i) = \frac{a_i}{a_0}$$

in practice, shoot a random number uniform rn in [0,1] and find r such as :

$$\sum_{i=1}^{r-1} a_i \leq a_0 rn < \sum_{i=1}^r a_i$$

STAARC : STochastic Atom-based ARtificial Chemistry

Properties

- 1 now all reactions have rates : real chemistry
- 2 simulated 3D well mixed medium
- 3 almost all HAC properties conserved
- we can simulate diffusion (reaction rate for collision)
- way faster computation

This turn a local resolution to a global one

- well mixed medium
- with infinite crowding

not intuitive ...

Replication: molecules size

Simple experiment: the replication according to the initial number of particles ($n \in \{30, 60, 600, 6000\}$) and λ ratio (between collision reaction + and conformation reaction .)

STAARC: replication

Properties

- Not very resilient original sequence quickly lost
- Scales very badly

Not that intelligently designed:)

Race conditions

- ► Race condition diffusion vs conformation
- Race condition concurrent replications

STAARC: replication

STAARC: long replication

Long replication experiment

- Starting with size 6 replication seed
- Production and degradation
 - $(x|0) \rightarrow \emptyset$
 - $\varnothing \to (x|0)$
- ▶ Let the simulation for 450,000 reactions
- Compute average size and number of divisions

Long replication: replication event

Long replication: average size

Long replication: standard deviation

STAARC: long replication

Long replication experiment

- ► Replication is extremely stable
- Division occurs in bumps
- ▶ The limit size is ... 6
- Big compounds created transiently

Random generation of reaction

- ▶ available types : {a, b, c}
- maximum number of state is 5.
- compute all the possible reactions
 - with no production nor degradation.
 - keeping only a fraction $p \in [0,1]$ randomly
- ▶ starting N = 10,000 particles (t|s) with $t \in \{a,b,c\}$ and 0 < s < 4

Experiment

- ▶ Maximum of 2,000 reactions.
- Compute the time needed
- ► The ratio of number of molecules

Phase transition

- ► Huge variability in the middle
- in molecules created
- in the time to the end of reactions
- this middle is for a low number of reactions

Drawbacks

- Results not conclusive
- Better random selection of reactions
- Common elements

STAARC

github.com/hsoula/staarc

Perspectives

Code

- Open-Endedness procedural enzyme
- ▶ Tri-molecular reactions
- Graph-based random chemistry
- 'Metabolic network'-like graph

Projects

- Explore Random Chemistry
- Use it in an evolutionnary set-up
- Artificial 'bacterial world'

thanks

hedi.soula@upmc.fr // sites.google.com/site/hsoula/

Soula HA, Generalized Stochastic simulation algorithm for Artificial Chemistry Proceedings of ALIFE XV, 2016 Cancun, Mexico

